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Lévy flights constitute a broad class of random walks that occur in many fields of research, from

biology to economy and geophysics. The recent advent of Lévy glasses allows us to study Lévy flights—

and the resultant superdiffusion—using light waves. This raises several questions about the influence of

interference on superdiffusive transport. Superdiffusive structures have the extraordinary property that all

points are connected via direct jumps, which is expected to have a strong impact on interference effects

such as weak and strong localization. Here we report on the experimental observation of weak localization

in Lévy glasses and compare our results with a recently developed theory for multiple scattering in

superdiffusive media. Experimental results are in good agreement with theory and allow us to unveil the

light propagation inside a finite-size superdiffusive system.
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Lévy flights define a general class of randomwalks, lying
beyond the commonly known Brownian motion, for which
the distribution of step lengths has a diverging variance
[1,2]. Random walks based on Lévy statistics [3,4] are
dominated by a few very long steps, thereby leading to a
transport process called superdiffusion, for which the mean
square displacement increases faster than linear in time
[5,6]. Lévy processes are common in nature and appear,
for instance, in animal foraging [7,8], laser cooling of cold
atoms [9], evolution of the stock market [10], astronomy
[11], random lasers [12], and turbulent flow [13].

Random optical materials provide an excellent test bed
to study complex transport phenomena, due to the broad
scale of available optical characterization techniques. The
experimental realization of a Lévy walk and superdiffusion
is, however, not easy since it requires creating the appro-
priate step-length distribution over a broad range of length
scales. Very interesting in this respect are the so-called
fractal aggregates of microscopic particles, obtained by
preparing suspensions of microspheres that in certain con-
ditions cluster and give rise to agglomerations with a
fractal structure [14,15]. The disadvantage of such struc-
tures is that their fractal behavior extends only over a limit
length scale and their distribution is difficult to control.
The recent development of Lévy glasses [16] and hot
atomic vapors [17] has allowed the observation of Lévy
flights of light waves and the resulting superdiffusion
process. Recent works have modeled incoherent light
transport in Lévy-type systems [18–20]. Since interference
effects play a dominant role in light transport [21], this
raises the natural question of how interference influences
optical superdiffusion—a concept which has not been
addressed so far.

Among all interference phenomena in random optical
materials, maybe the most robust is that of weak localiza-
tion [21]. It is observed in the form of a cone of enhanced
backscattering, which contains information on the path
length distribution deep inside the random system and
which has been observed in recent years from several
diffusive random structures [22–27]. In one of the first
extensive theoretical studies of weak localization, the
case of anomalous transport—beyond regular diffusion—
was discussed, in particular, for a random walk on a fractal
[28]. More recently, it was shown how the generally used
diffusion approximation in multiple light scattering theory
can be expanded to superdiffusion and what consequences
this has for weak localization [29].
In this Letter we report on the experimental observation

of weak localization from superdiffusive materials, which
constitutes the first observation of an interference effect in
transport based on Lévy statistics. We find a good agree-
ment with superdiffusive transport theory and show how
the backscattering cone can be used to extract the Green’s
function in a Lévy glass. Contrary to regular diffusive
media, in a Lévy glass, light from an arbitrary depth inside
the medium has a nonvanishing probability to couple di-
rectly to the surrounding environment. This latter property
makes light scattering from Lévy glasses complex, and has
important consequences for its (back)scattering properties.
The Lévy glasses under investigation are made of

jammed microscopic glass spheres, whose diameter (�)
varies almost over 2 order of magnitude (from 5 to

230 �m) following a power-law distribution pð�Þ �
��ð�þ1Þ, with � adjustable parameter. These spheres
are embedded in a polymeric matrix which matches
their refractive index (n ¼ 1:52) and in which TiO2
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nanoparticles (average diameter 280 nm) have been dis-
persed [Fig. 1(a)] [30]. Because their refractive index (n ¼
2:4) is higher than the polymer, these nanoparticles act as
point scatterers which are not homogeneously distributed
throughout the sample due to the presence of the glass
spheres [Fig. 1(b)]. As a result, light transport is dominated
by the long ‘‘jumps’’ that light performs propagating
through the microscopic spheres. The step-length distribu-
tion that light performs in Lévy glasses follows a power-

law decay as pðlÞ � l�ð�þ1Þ, where � is related to � as
� ¼ �� 1 for an exponential sampling of the diameter
distribution [30]. In practice, the step-length distribution is
truncated by the diameter of the largest sphere.

By controlling the diameter distribution of the spheres in
a Lévy glass we can control � and, thus, the degree of
superdiffusion of the material. For � � 2 the system is
diffusive, whereas for 0<�< 2 the system is superdiffu-
sive. In real finite systems the truncation of the step-length
distribution leads to a transition from superdiffusion to
diffusion [18,19]. In previous publications [16,30] Lévy
glasses were fabricated between two microscope slides. In
this work we remove one of the two slides to reduce
undesirable reflections which affect the quality of the
measurements. Moreover, the thickness of the sample is

approximately 70 �m more than the largest sphere, to
avoid direct reflections from the microscope slide on the
back of the sample. This means that the sample is slightly
thicker than the cutoff length of the step-length distribu-
tion. We found that this increased thickness does not sig-
nificantly influence the shape of the backscattering cone
within the accuracy of our measurements.
The setup employed follows a common scheme for

coherent backscattering experiments. Light emitted by a
HeNe laser (at 632 nm) is expanded to a collimated beam
of about 1 cm in diameter to ensure a high angular resolu-
tion of the system. A beam splitter is used to separate the
backscattered light from light impinging on the sample.
Subsequently, the backscattering cone is imaged on a CCD
camera and the use of a polarizer ensures that we observe
only the polarization conserving channel [21]. The sample
is nutated to average over different disorder realizations.
We measured the backscattering cone on two different

sets of superdiffusive samples characterized by � ¼ 1:5
and � ¼ 1, and reference samples made of TiO2 and
polymer (without glass spheres). In the reference samples
the concentration of TiO2 was chosen to obtain the same
overall density of scatterers as in the superdiffusive
samples. The experimental results are shown in Fig. 2,
together with a fit to diffusion theory (red line) [24].
While in the case of the diffusive sample there is a perfect
match between experiment and theory (‘? ’ 19 �m), in
the superdiffusive case in Figs. 2(b) and 2(c) it is clear that
regular diffusion theory cannot properly describe the opti-
cal properties of Lévy glasses. In particular, one can notice
the rising of the tail of the cone as the degree of super-
diffusion increases, i.e., when � decreases.
The coherent backscattering cone for the superdiffusive

samples under investigation can be calculated by taking
advantage of the fractional derivative approach developed
in Ref. [29], which allows us to take into account the finite
sample size and cutoff in the path length distribution.
The transport of light in a finite, in-plane translationally
invariant, superdiffusive system for a point source at x0
is described by the stationary fractional diffusion
equation [29]:

FIG. 1 (color). (a) Electron micrograph of the interior of a Lévy
glass. (b) Sketch representing the optical mechanism lying behind
the coherent backscattering cone in a Lévy glass. L ¼ 300 �m is
the thickness of the sample and � the diameter of the spheres. In
both images the scale invariance of the system is evident.
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FIG. 2 (color). (a)–(c) Measured coherent backscattering cone from diffusive samples and Lévy glasses with � ¼ 1:5 and � ¼ 1,
respectively. In red, fit to the experimental data according to standard diffusion theory. Insets: Residuals of the fits.
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D�ðr�
z � k�?Þfðz; z0;k?Þ ¼ ��ðz� z0Þ; (1)

where r� is the symmetric Riesz fractional derivative with
respect to spatial derivatives, k? is the in-plane component
of the wave vector in free space, fðz; z0;k?Þ is the intensity
propagator, andD� is a generalized diffusion constant. The
spatial nonlocality of r� makes the definition of boundary
conditions nontrivial [31]. In order to model physical
systems, such as Lévy glasses, the fractional Laplacian
operator can be represented by an M�M matrix, whose
eigenvalues �i, rescaled as �i ! �iðM=LÞ� with L the slab
thickness, and eigenvectors c i converge to those of the
continuum operator as M goes to infinity [32]. Absorbing
boundary conditions can be implemented by reducing the
infinite size matrix to a finite-size matrix and Eq. (1) can be
solved by eigenfunction expansion. The knowledge of the
intensity propagator of the system then makes it possible
to calculate interference effects in a superdiffusion

approximation. In particular, considering a plane wave at
normal incidence on the slab interface and in the
Fraunhofer regime, the coherent component of the albedo
is given by the following expression:

Acð�Þ / �X

z1;z2

Fðz1; z2; �Þ
XM

i¼1

c iðz1Þc iðz2Þ
ð�i � k�?Þ

; (2)

where Fðz1; z2; �Þ ¼ Pðz1ÞPðz2ÞPðz1= cos�ÞPðz2= cos�Þ
describes the attenuation for the amplitude of the incident
and emergent plane waves in the scattering medium, � is
the angle between the incident and emergent plane waves
[Fig. 1(b)], and k? ¼ jk?j ’ ð2�=�Þ�, at small angle �.
The amplitude attenuation PðlÞ is modeled as a Pareto-like

distribution PðlÞ ¼ 1 for 0� l� lc and PðlÞ¼ ðlc=lÞð�þ1Þ=2
for l � lc, where lc is the cutoff length, as to closely follow
the step-length distribution of real Lévy glasses [18].
Internal reflections are neglected.
The results are shown in Fig. 3 for � ¼ 1:5 and � ¼ 1,

where the only adjustable parameter used is lc. The inset
shows the residuals between theory and experiment,
which are greatly reduced with respect to the diffusive fit
[Figs. 2(b) and 2(c)]. Because of the very long tail of the
cones for Lévy glasses and the lack of an analytical ex-
pression for it, the experimental incoherent background is
set to the one obtained semianalytically. It must be pointed
out that for these calculations we employed a step-length
distribution which was not truncated, in contrast to the real
system. This is due to the fact that the propagator
fðz; z0;k?Þ of the system has been calculated by consid-
ering the sample as translational invariant in the in-plane
direction and finite in the longitudinal direction. A transi-
tion in the shape of the cone due to the truncation is
expected to manifest itself mostly at small angles, which
are below the resolution of our setup. The very good
agreement between experiment and calculation shows
that the fractional diffusion approach can properly describe
light interference effects due to multiple scattering in the
superdiffusion approximation.
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FIG. 3 (color). Comparison between the calculated superdiffu-
sive cones obtained with the fractional derivative approach and
the measured Lévy cones (blue for � ¼ 1, red for � ¼ 1:5).

FIG. 4 (color). (a) Amplitude of the Fourier transform (FT) of the measured and calculated coherent backscattering (CB) for small
�y. (b),(c) Amplitude of the Fourier transform of the calculated CB and intensity distribution fðx ¼ ‘�; x0 ¼ ‘�; �yÞ for large �y.
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The characteristic features of the backscattering cone
taken from a Lévy glass include a sharpening of the top and
at the same time a more gentle decay at large angles,
leading to an apparent broadening of the cone at increasing
�. At first sight this might be counterintuitive, since the
width is expected to be inversely proportional to the mean
free path ‘, whereas in a Lévy glass the average step length
‘� increases when � decreases. An analysis of the Green’s
function can help to shed light on this behavior. The
backscattering cone is basically the Fourier transform of
the lateral intensity distribution created by a point source
inside the medium [33]. The propagator can therefore be
well approximated by performing a Fourier analysis of the
experimentally observed coherent backscattering.

In Fig. 4(a) the normalized Fourier transform of the
measured and calculated coherent albedo as a function of
the displacement along the in-plane y direction �y ¼
jðr1 � r2Þyj are shown. These curves are found to be in

good agreement and show a remarkable reshaping as a
function of �. In Figs. 4(b) and 4(c) the normalized
Fourier transform of the theoretical cone and the normal-
ized intensity distribution fðz ¼ ‘�; z0 ¼ ‘�; �yÞ calcu-

lated from the fractional diffusion approach for an ideal
(untruncated) Lévy walk in a slab, respectively, are shown
for long �y. The qualitative agreement between these two

figures is evident, in particular, in their dependency on the
degree of superdiffusion. The spatial distribution of the
propagator is dictated by the power-law step-length distri-
bution in Lévy glasses, which allows light to couple di-
rectly to the surrounding environment from any depth
inside the sample. This spatial nonlocality applied to an
open system such as a Lévy glass results in a strong
modification of the shape of the propagator as a function
of � [29]. The fact that light can escape more easily from
its local environment towards large distances makes the
cusp of fðz ¼ ‘�; z0 ¼ ‘�; �yÞ sharper, giving rise to

slowly decaying tails in the coherent albedo, while the
gentle tail of fðz ¼ ‘�; z0 ¼ ‘�; �yÞ, due to the very long

trajectories, results in a sharper cusp for the coherent
albedo. It would be interesting to look into the effect of
such long-range behavior in strongly scattering systems
close to or in the Anderson localized regime, where super-
diffusion would most likely counteract localization to a
certain extent. It is also likely that the critical dimension
abovewhich a localization transition occurs reduces from 2
to a value related to �. Vice versa, around the localization
transition, diffusion can become anomalous due to a size
and distance dependence renormalization of the diffusion
constant [34–36].
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