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A Lévy flight for light
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A random walk is a stochastic process in which particles or waves
travel along random trajectories. The first application of a random
walk was in the description of particle motion in a fluid (brownian
motion); now it is a central concept in statistical physics, describ-
ing transport phenomena such as heat, sound and light diffusion1.
Lévy flights are a particular class of generalized random walk in
which the step lengths during the walk are described by a ‘heavy-
tailed’ probability distribution. They can describe all stochastic
processes that are scale invariant2,3. Lévy flights have accordingly
turned out to be applicable to a diverse range of fields, describing
animal foraging patterns4, the distribution of human travel5 and
even some aspects of earthquake behaviour6. Transport based on
Lévy flights has been extensively studied numerically7–9, but
experimental work has been limited10,11 and, to date, it has not
seemed possible to observe and study Lévy transport in actual
materials. For example, experimental work on heat, sound, and
light diffusion is generally limited to normal, brownian, diffusion.
Here we show that it is possible to engineer an optical material in
which light waves perform a Lévy flight. The key parameters that
determine the transport behaviour can be easily tuned, making
this an ideal experimental system in which to study Lévy flights
in a controlled way. The development of a material in which the
diffusive transport of light is governed by Lévy statistics might
even permit the development of new optical functionalities that
go beyond normal light diffusion.

In recent years, light has become a tool widely used to study trans-
port phenomena. Various analogies between electron, light and
matter-wave transport have been discovered, including weak and
strong localization12, the Hall effect13, Bloch oscillations14 and uni-
versal conductance fluctuations15. Understanding light in disordered
systems is of primary importance for applications in medical imaging
(for example tumour diagnostics)16, random lasing17 and image
reconstruction18. Most of these studies have been limited to the sim-
plified case in which the light performs a random walk that can be
described as a diffusion process.

In a Lévy flight, the steps of the random walk process have a power-
law distribution, meaning that extremely long jumps can occur2,19,20

(Fig. 1). Consequently, the average step length diverges and the dif-
fusion approximation breaks down for Lévy flights. Power-law dis-
tributions often appear in other physical phenomena that exhibit
very large fluctuations, for instance the evolution of the stock mar-
ket21,22 and the spectral fluctuations in random lasers23,24.

A random walk in which the step length is governed by Lévy
statistics leads to superdiffusion; that is, the average squared displace-
ment Æx2æ increases faster than linearly with time t
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where c is a parameter that characterizes the superdiffusion and D is a
generalized diffusion constant. For c . 1 we have superdiffusion,
whereas for c 5 1 we recover normal diffusive behaviour. Normal
diffusions are therefore limiting cases of Lévy flights. In Lévy
flights, superdiffusion is purely a result of the long-tailed step-length

distribution. Random walks in which the step time (and thus a finite
velocity) is also important are called Lévy walks19. A long-tailed dis-
tribution in the scattering dwell time can give rise to, for example,
subdiffusion25 (c , 1). There is no practical difference between a Lévy
walk and a Lévy flight in the experiments described in this paper,
because all of the experiments are static (time independent).

We report here on the creation of an optical material in which the
step-length distribution can be specifically chosen. We use this to
produce a structure in which light performs a Lévy flight. In a set of
experiments, we show that the optical transport in such a material is
superdiffusive. To produce such a structure requires an approach
that initially seems counter-intuitive. The material that we have
obtained is, however, relatively easy to make and provides the first
well-controlled experimental test ground for Lévy transport pro-
cesses. We propose the name Lévy glass for this material.

To obtain an optical Lévy flight it might seem best to develop
scattering materials with self-similar (fractal) structures. This
approach turns out not to work in practice, owing to the dependence
of the scattering cross-section on size. In, for instance, a fractal col-
loidal suspension, the larger particles would be subject to resonant
(Mie) scattering, whereas the smaller particles would hardly scatter at
all (Rayleigh limit). The solution is to find a way to modify the density
of scatterers instead of their size. This makes it possible to obtain a
scattering mean free path that depends strongly on the position
inside the sample.

We have found a relatively easy, but so far unstudied, method of
doing this, using high-refractive-index scattering particles (of tita-
nium dioxide in our case) in a glass matrix. The local density of
scattering particles is modified by including glass microspheres of a
particular, highly non-trivial size distribution. These glass micro-
spheres do not scatter, because they are incorporated into a glass host
with the same refractive index. Their sole purpose is locally to modify
the density of scattering elements.
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Figure 1 | Random walk trajectories. a, Normal diffusive random walk;
b, Lévy random walk with c 5 2 (Lévy flight). In the normal diffusive
random walk, each step contributes equally to the average transport
properties. In the Lévy flight, long steps are more frequent and make the
dominant contribution to the transport.
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The random walk in normal diffusive materials has a gaussian
step-length distribution with average step length given by the mean
free path ,

‘~
1

Nsh i ð1Þ

where s is the scattering cross-section and N is the density of scatter-
ing elements. The angle brackets indicate an average over the sample
volume. To permit Lévy flights, the material should give rise to a step-
length distribution with a heavy tail, decaying as26

P zð Þ? 1

zaz1

where P(z) is the probability of a step of length z and a is a parameter
that determines the type of Lévy flight. The parameter a can be shown
to be related to the superdiffusion exponent c by c 5 3 2 a, for
1 # a , 2 (ref. 7). The moments of this distribution diverge for
a , 2, which means that the average in equation (1) can no longer
be taken over the entire sample. However, Ns can still be interpreted
as the local scattering strength of the material.

Our samples were made by suspending titanium dioxide nanopar-
ticles in sodium silicate, together with a precisely chosen distribution
Ps(d) of glass microspheres of different diameters d. The total concen-
tration of titanium dioxide nanoparticles was chosen such that,
on average, about one scattering event takes place in the titanium-
dioxide-filled spaces between adjacent glass microspheres. The step-
length distribution is then determined by the density variations
induced by the distribution Ps(d) of the glass microspheres. We have
calculated that a diameter distribution Ps(d) 5 1/d21a is required to
obtain a Lévy flight with parameter a, and show this experimentally
below. Although with our method we can obtain a Lévy flight with any
value of a, we have chosen to work with a 5 1, because this is one of the
few cases in which the Lévy distribution has a simple analytical expres-
sion (namely that of the Cauchy distribution27). For all other details on
sample preparation and the derivation of the diameter distribution for
Lévy flights with parameter a, see Supplementary Information.

We made a series of samples of different thicknesses in the range
30–550 mm. This allowed us to record the thickness dependence of
the total transmission. To do so, a collimated He–Ne laser beam was
used incident on the sample on a spot of area 1 mm2. The total
transmitted light was then collected by means of an integrating
sphere. Total transmission in normal diffusive systems is known to

decay following Ohm’s law, which means that the transmission
depends linearly on the inverse sample thickness12. For superdiffu-
sion this can be generalized as follows, where A is a constant and L is
the thickness28:
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Figure 2 | Thickness dependence of the total transmission. For
superdiffusion the transmission decays much more slowly than for normal
diffusion, and should follow a power law with exponent a/2. The dashed grey
curve shows the normal diffusive behaviour (a 5 2), whereas the black line is
a fit to the data with only a as free parameter. We obtain a 5 0.948 6 0.09,
which is very close to the expected value, a 5 1, for a lorentzian Lévy flight.
For very thick samples (550mm), optical absorption decreases the
transmission to slightly below the ideal curve. Error bars, s.d.
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Figure 3 | Spatial dependence of the transmission on the output surface.
a, Spatial distributions of the transmitted intensity for the Lévy samples
(top) and for normal diffusive samples of the same thickness (bottom). The
images were taken using a Peltier-cooled charged-coupled-device camera on
the output surface of the sample, which was illuminated from the front with
a focused (2mm-spot-size) He–Ne laser. The sample was placed between
crossed polarizers to make sure that any residual ballistic light was blocked.
The normal diffusive sample was made by using only sodium silicate and
titanium dioxide powder. In the Lévy case we can see that the transmission
profiles strongly fluctuate from one measurement to another, whereas in the
normal diffusive case they are nearly constant. b, Distributions of the radius
R (normalised to its average, ÆRæ)and total intensity I (normalised to its
average, ÆIæ) of the transmission profiles for the normal diffusive (blue) and
Lévy (red) samples. We can see that the very large fluctuations in the Lévy
case correspond to a broad distribution function of both the intensity and
radius of the transmission profile.
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For the normal diffusive case in which a 5 2, we recover Ohm’s law of
conductance. The experimental data are shown in Fig. 2. We can see
that they decay much more slowly than linearly, showing that trans-
port in these samples is superdiffusive. In this case a 5 0.948 6 0.09.

This result is in excellent agreement with the expected value for
a lorentzian Lévy flight, without the use of any additional fit
parameters.

The power-law step-length distribution of a Lévy flight is expected
to give rise to strong fluctuations in the transport properties of indi-
vidual samples. In the total transmission profile we should therefore
observe large differences between disorder realizations. In compar-
ison, a normal diffusive sample would show almost no fluctuations.
In Fig. 3a, we present the intensity profiles taken from the output
(rear) surface of a sample that is illuminated from the front with a
focused He–Ne laser. Successive images were taken by moving the
sample over distances much larger than the illuminated region.

We compared the behaviour of a Lévy glass with that of a normal
diffusive system of the same thickness. From the Lévy glass we
observed very large differences between disorder realizations,
whereas the result for the normal diffusive system is nearly constant.
To quantify this behaviour we calculated the distributions of the
radius and the intensity of these profiles on a set of 900 disorder
realizations (Fig. 3b). In the Lévy case the distributions are extremely
broad, but in the normal diffusive case they are very narrow.
Moreover, in the Lévy case the distributions have slowly decaying
tails, which are absent in the normal diffusive case.

The characteristics of the Lévy flight also survive if we perform an
average over a large number of observations. The resulting profiles of
the transmitted intensity on the output surface are plotted in Fig. 4
and compared with the results of Monte Carlo simulations. Both the
experimental and the simulation results show the same features. For
the normal diffusive system we observe that the profile has, as
expected, a bell-shaped profile, which is very close to a gaussian
curve. For the Lévy sample, however, the profile exhibits a well-
defined cusp and has tails that decay much more slowly than in the
normal diffusive case. The agreement between the experimental and
simulated profiles is very good. The small discrepancy in the overall
width of the profile can be explained by the influence of internal
reflections at the boundary of the sample, which were not taken
into account in the Monte Carlo simulations. We have verified that
in a sample made of titanium dioxide nanoparticles and just one
family of (large) glass microspheres, the profile remains gaussian
(Supplementary Information). This confirms that the density varia-
tions induced by the entire size distribution of glass microspheres are
required to obtain a Lévy flight.
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Figure 4 | Average transmission on the output surface versus radial
distance from the centre. a, Experimental data. In the Lévy case (black) an
average over 3,000 sample configurations was needed to obtain the average
behaviour. The profile of the Lévy sample shows a pronounced cusp, and
slowly decaying tails. The normal diffusive sample (grey) has a profile close
to a gaussian lineshape: the top is rounded and long tails are absent. b, Result
of Monte Carlo simulations of a normal diffusive random walk (grey) and a
Lévy random walk (black) in a slab. The superdiffusive profile again displays
a sharp cusp and decays more slowly than does the normal diffusive profile.
The difference in absolute widths between experiment and simulation is due
to internal reflections at the boundary of the sample, which were not taken in
account in the simulations.
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Figure 5 | Lévy walk in an inhomogeneous medium. a, Random walker
trajectory, obtained by Monte Carlo simulation. Owing to the strong density
fluctuations, the scattering material permits Lévy flights (red). Inset,
magnification showing the scale invariance of the material’s structure. b,

Average squared displacement. The spreading is superdiffusive, with a 5 1.
Because the sample is of finite size, the Lévy walk is truncated at t 5 dmax/v,
where dmax is the maximum step length, determined by the sample thickness.
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Real physical samples are intrinsically of finite size, which means
that the largest step size of the Lévy flight is limited by the sample size.
This introduces a cutoff in the step-length distribution and results in
a so-called truncated Lévy flight. On length scales greater than this
cutoff, the transport is expected to recover normal diffusive beha-
viour29. We investigated this by running a series of Monte Carlo
simulations in which we studied a random walk in a two-dimensional
system similar to our samples, namely a scattering medium where
disk-shaped regions are introduced without scattering elements. The
diameter distribution of these two-dimensional disks was chosen,
following the same reasoning as above, as Ps(d) 5 1/d2. We simulated
the evolution with time of the averaged squared displacement of
light propagating in this system. The results of these simulations
(Fig. 5) show superdiffusive behaviour that, on a very long timescale,
develops into normal diffusive behaviour. The parameter c of the
superdiffusive expansion was found to be close to two, as expected
for a lorentzian Lévy flight. The timescale of the transition from
superdiffusive to diffusive transport is given by the time necessary
to probe all possible step lengths: ttrans 5 dmax/v, where dmax is the
greatest step length and v is the velocity of the random walker. In our
samples, the thickness was equal to this cutoff length (greatest sphere
diameter). As a result, the effect of the cutoff can be expected to be
negligible within the signal-to-noise ratio of our experiment.

We have shown that it is possible to make disordered optical
materials with controllable step-length distributions. In particular,
we have made superdiffusive optical materials permitting optical
Lévy flights. The physics of light transport is closely related to the
transport of electrons and matter waves, and important analogies like
the optical Hall effect, weak and strong localization of light, and
correlations in laser speckle have been identified in recent years.
The question of how these phenomena are manifest in Lévy glass is
still completely open. The procedure that we have used to synthesize
Lévy glass is reproducible and can be implemented on a large (indus-
trial) scale. Our techniques could be used in the development of new
opaque optical materials, such as paints with particular visual effects
and lasers based on superdiffusive feedback.
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8. Drysdale, P. M. & Robinson, P. A. Lévy random walks in finite systems. Phys. Rev.
Lett. 58, 5382–5394 (1998).

9. Frenkel, D., van Luijn, F. & Binder, P. Evidence for universal asymptotic decay of
velocity fluctuations in Lorentz gases. Europhys. Lett. 20, 7–12 (1992).

10. Ott, A., Bouchaud, J., Langevin, D. & Urbach, W. Anomalous diffusion in living
polymers: a genuine Levy flight? Phys. Rev. Lett. 65, 2201–2204 (1990).

11. Solomon, T. H., Weeks, E. R. & Swinney, H. L. Observation of anomalous diffusion
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