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Imaging is an umbrella term used for a large variety of tech-
niques that aim to form a representation of an object’s spatial 
distribution. The simplest and most common forms of opti-

cal imaging use a lens to reproduce the intensity of the light scat-
tered from an object on an image plane where it can be measured 
by a multipixel detector array—a camera. This works because 
in free-space propagation, a lens can create a reliable one-to-one 
mapping between each point on the imaged plane and each point 
on the detector. However, if light is scattered during its propaga-
tion this relationship is broken: the light from each point on the 
object is spread to many camera pixels, and the quality of the image 
is degraded. How much the quality of the image degrades depends 
on how and how much of the light is scattered. This is dictated 
by the properties of the medium, and can be characterized by the 
medium’s transport mean free path, ℓt (ref. 1). For a collimated light 
beam, the fraction of light still unscattered after traversing a scat-
tering medium of thickness L will be given by the Lambert–Beer  
law: e−L/ℓt (ref. 2).

As shown in Fig. 1, at a distance L < ℓt only a small fraction of 
light has been scattered, and the reduction in imaging quality is 
minimal. However, at a distance L ≈ ℓt, a substantial fraction of the 
light has been scattered, resulting in a blurry background, obscuring 
the object features. Finally, for L ≫ ℓt essentially all of the light has 
been scattered and the conventional image degrades to the point 
where no sharp object features can be seen (Fig. 1)3.

Whether a sample is scattering or not also depends on the type 
of wave used for imaging. For example, soft tissues scatter vis-
ible light, but not X-rays or ultrasound. Similarly, concrete walls 
scatter (and absorb) light and sound, but affect radio-frequency 
waves much less. As a consequence, two direct approaches to 
avoid scattering are modifying the medium or the imaging modal-
ity. Examples include tissue clearing by chemical means4 and the 
use of X-rays to image inside the body5. Despite the existence of 
techniques that turn scattering into a non-problem, there are situa-
tions where none of these options are viable. Such is the case when 
the medium cannot be altered, when ionizing radiation (such 
as X-rays) is undesired or when the contrast or resolution pro-
vided by the non-scattered waves is insufficient. For example, the 
non-microscopic resolution of ultrasound imaging cannot resolve 
cellular structures6. In this Review we describe the main tech-
niques that have been developed to tackle scattering, with a focus 
on the recent developments in optical imaging, but with the goal 
of highlighting the fundamental similarities between different fields  
and approaches.

Imaging by filtering out scattered light
In many instances of imaging in volumetric scattering media—
particularly at depths below ℓt—a small fraction of light remains 
unscattered. One option to improve imaging is therefore to use only 
this small portion of unscattered (or ‘ballistic’) light to form the 
image. This approach has the advantage that, because the light used 
for imaging was never disturbed, one can directly reconstruct very 
sharp images.

There are different approaches to separate the scattered and 
unscattered light. One option is to time-gate the light by sending 
short pulses to illuminate the scene and then measure only the light 
arriving at a given time. As the diffused background travels through 
many different paths, it is temporally broad, and a short time-gate 
preferentially selects the light that bounced back from the object 
but was otherwise unscattered. This approach has the additional 
advantage of providing a measurement of the distance, allowing a 
three-dimensional reconstruction, and is thus commonly used in 
light detection and ranging (LiDAR)7. For time-gating to work, the 
time gate has to be much shorter than the typical temporal spread of 
the signal. Time-gating can be achieved by using fast detectors, or 
by low-coherence interferometry using a short-temporal-coherence 
source, which is the basis for optical coherence tomography (OCT)8.

A different approach to preferentially measure unscattered light 
is spatial gating, which aims to select the light that originated from 
a specific illuminated point in the medium. The idea is that when 
focused illumination and an imaging system are used, the scattered 
light would be spread over a large area in the detector plane, whereas 
the unscattered light would be concentrated around the imaged illu-
mination point. This is the principle behind confocal microscopy9. 
Another effective approach for spatial gating is to use nonlinear sig-
nal generation mechanisms, such as harmonic frequency generation 
or multiphoton fluorescence excitation10. Multiphoton microscopy 
exploits the fact that nonlinear signals are preferentially generated at 
the focus, where the instantaneous intensity is the highest11, and has 
recently achieved imaging at depths approaching ℓt (ref. 12).

The main limitation of gating-based approaches are that there is 
always a small fraction of scattered light that incidentally underwent 
a path of exactly the same length and direction as the unscattered 
ballistic light and the intensity of the unscattered light decays expo-
nentially with depth. Therefore, at sufficiently large imaging depths, 
the detected intensity of the unwanted scattered waves, which decay 
linearly with depth, will be higher than that of the desired unscat-
tered waves13. Although the exact values depend on the details of 
the medium and specific technique, such ‘filtering’ approaches tend 
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to work up to thicknesses comparable to ℓt, and degrade quickly 
beyond it. To reach greater depths one must therefore use scattered 
light for imaging, rather than discard it.

Imaging with scattered light
The scattering matrix formalism. When imaging at depths  
beyond ℓt, one has no choice but to form the image from the (mul-
tiply) scattered light14. Since in nearly all practical optical imaging 
situations the light intensities involved are too low to induce a sub-
stantial nonlinear interactions outside the focus, light propagation 
in complex media can be considered linear. As a consequence, the 
scattered optical field measured after propagation through a com-
plex medium is a linear sum of the medium’s response to the field at 
each point in the input plane (Fig. 2a).

Formally, the propagation through a complex medium is 
described by a set of Green functions, G(rin, tin, rout, tout), connect-
ing the input field at each position coordinate rin and time tin (for 
example, the field at the target object plane, Ein(rin, tin)) with the 
output field at each output position coordinate, rout, at a time tout 
(for example, the field at the camera plane, Eout(rout, tout)). If the 
scattering medium response is time-invariant, the Green function 
depends only on t = tout − tin, and one can perform a Fourier trans-
form with respect to time to obtain the complex-valued input–out-
put relation at each angular frequency ω: Gω(rin, rout). For simplicity, 
we will consider the case of monochromatic excitation, where the 
input–output relations are given by the single-frequency response:  
Eout(rout) = ∭Gω(rin, rout)Ein(rin)d3rin.

In the spatial domain, the field can be decomposed into dis-
crete spatial channels: En(r) (with n = 1 … N). Thus, the medium’s 
Green functions can be discretized in space, and written as a single 
complex-valued matrix, S (for each frequency ω). This scattering 
matrix fully describes the medium response in both transmis-
sion and reflection (for a more detailed discussion, see ref. 15). 
Each of its elements, Sm,n, describes the response at the m-th out-
put mode for excitation of the n-th input mode (Fig. 2a,b). In the 
scattering matrix formalism, the output field is given by the matrix 
multiplication between the scattering matrix and the input field:  
Eout = SEin; that is, Eoutm = Sm,nEinn .

Each scattering matrix column n = 1 … N thus gives the Green 
function (impulse response) of the medium to excitation by the 
input mode n (Fig. 2b). One has the freedom to choose which 
basis to use for the field decomposition. Although the real-space 
and k (angular) space bases are two natural and common choices 
in optics, other bases (such as transmission eigenchannels16,17, prin-
cipal modes18 or singular vectors13) sometimes provide valuable 
insights into the physics of the system. It is often useful to sepa-
rate the scattering matrix into ‘transmission’ (T) and ‘reflection’ (R) 
matrices, describing the medium response in transmission and 
reflection, respectively.

As the scattering matrix formalism describes any linear trans-
formation, it can also describe the wave propagation—for any kind 
of wave, not only light—from a target object to the image plane of 
any linear imaging system, taking into account both the complex 
medium and imaging optics. In optical imaging, the image formed 
by a single point source is known as the point spread function 
(PSF)19. The columns of the transmission matrix in the canoni-
cal basis thus represent the coherent (field amplitude) PSF of each 
point in the object plane. Figure 2c–k provides three representative 
numerical examples of transmission matrices for three common 
practical imaging scenarios. First, the ideal case of a well-designed 
isoplanatic optical system imaging through a non-scattering homo-
geneous medium (Fig. 2c–e). In this case, the imaging PSF is a 
high-contrast diffraction-limited spot, the transmission matrix in 
the canonical basis is a nearly diagonal matrix (that is, all points have 
the same PSF) and the formed image is a sharp diffraction-limited 
representation of the object. Second, atmospheric turbulence or an 
imperfect imaging system comes with smooth, large-scale inhomo-
geneities (compared with the wavelength) that produce low-order 
aberrations, resulting in a wider PSF with a possibly non-flat phase 
response (Fig. 2f–h). Finally, there is imaging through multiply 
scattering turbid media. Here, the field from each input point is 
scattered multiple times and the interference between the different 
paths generates a complex speckle pattern (Fig. 2i–k), with sharp 
bright and dark spots of diffraction-limited dimensions: σx ≈ λ/NA, 
where λ is the wavelength, and NA is the numerical aperture20.

While the transmission matrix of a complex medium is the result 
of multiple scattering, it is not a completely random matrix but, per-
haps surprisingly, possesses inherent correlations15.

The most widely exploited type of correlation for imaging is 
the so-called optical memory effect for angular speckle correla-
tions, which represents the inherent tilt invariance (or isoplana-
tism) of scattering through media of finite thickness21,22. It can be 
expressed as a similarity in the structure of speckle patterns gener-
ated at the image plane by light that originates from nearby points 
at the object plane (Box 1). The memory-effect correlations are, in 
essence, correlations between the scattering matrix columns when 
represented in the appropriate basis—in the plane-wave basis for a 
bare scattering medium or the canonical basis of a focused imaging 
system, with the complex medium at its pupil. Figure 2k provides 
an example. The correlations are clearly visible as diagonal smears, 
signifying the shift invariance of the scattering PSF in this imaging 
configuration. The angular range of the memory effect is thus the 
same isoplanatic angle—also known as the isoplanatic patch—used 
in adaptive optics23 and ultrasound imaging24. Indeed, the generality 
of the scattering matrix formalism is not only useful for analysing 
optical imaging approaches, but also allows it to be commonly used 
in other domains from ultrasound24,25 to geophysics26.

Diffuse optical tomography. When the goal is to only image rel-
atively large object features compared with the imaging depth, at 
depths considerably larger than ℓt, then low-resolution imaging is 
possible even if the scattering matrix is not explicitly known. In such 
a case, the amplitude of the average spatial envelope of the scattering 
PSF, neglecting interference (that is, the diffusive blurry halo) is well 

L ≈ ℓtL > ℓt

L < ℓt

Fig. 1 | Imaging through fog as one example of optical imaging through 
complex media. Fog is composed of small water droplets that scatter visible 
light, preventing the formation of a clear image. Imaging through a layer of 
fog thinner than a characteristic distance, ℓt, known as the transport mean 
free path, will result in a slightly degraded image, but if the thickness of the 
fog layer, L, is much bigger than ℓt, no image can be formed at all.
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described by a diffusion approximation2. If the geometry and scat-
tering properties of the sample and system are known, it is possible 
to compute the resulting spatial distribution of the average inten-
sity for each point of illumination3. In this fashion, a coarse-grained 
intensity-only transmission matrix of the medium that describes 
the forward problem can be constructed, and retrieval of deep-lying 
objects can be attempted by linear inversion. This is the principle 
behind diffuse optical tomography (DOT)27. As the coarse-grained 
forward diffusion problem effectively models scattering as blur-
ring by a large Gaussian-like convolution kernel with a width of the 

order of the imaging depth, diffuse optical tomography can image 
inside strongly scattering media with a resolution of the order of the 
imaging depth28.

Computational imaging using a known transmission matrix. 
In the scattering matrix framework, imaging in complex media 
can be interpreted as the reconstruction of the input field distri-
bution, Ein(x, y, z), from measured output fields (scattered light) 
distributions: Eout = SEin. In principle, if the scattering matrix  
from the object plane to the image plane S is known exactly, it is 
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Fig. 2 | Scattering-matrix formalism describing linear field propagation through complex media. a, In most cases in optics, owing to the linearity of the 
problem the field produced by two sources is the sum of the fields produced by each source separately even after multiple scattering events (plotted here 
for a monochromatic case). b, For each monochromatic frequency, the scattered field is given by a matrix multiplication of the complex-valued scattering 
matrix S with the input field: Eout = SEin. Each column of S is the response to an input (that is, a Green function). In the canonical basis, a column of S is the 
complex field PSF. c–k, Numerical examples of the PSF (c,f,i), a slice of the S matrix (d,g,j) and the resulting image (e,h,k) for several common imaging 
scenarios. c–e, An ideal, free-space, imaging system. f–h, Imaging through low-order aberrations, as in weak atmospheric turbulence. i–k, Imaging through 
a strongly scattering medium, where multiple scattering dominates.
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possible to calculate the input field using the matrix inverse S−1. In 
practice, however, experiments are often limited to measuring only 
the transmission (T) or reflection (R) parts of S. Combined with 
measurement noise and absorption, this makes the exact inversion 
impossible. Nonetheless, it is possible to estimate the input field 
via the pseudo-inverse operator using a variety of well-established 
linear inverse problem approaches, such as the Moore–Penrose 
pseudo-inverse and Tikhonov regularization29. Improved recon-
struction can be obtained using compressed-sensing reconstruction 
algorithms when priors on the object are available30.

However, although the transmission matrix can be directly 
measured if one has access to both the input (object) plane and the  
output plane of the scattering medium31, as was exploited in works 

that used a fixed random medium as a scattering lens32,33, such ‘inva-
sive’ access to the object plane is usually impossible in practice. Such 
is the case when non-invasive imaging through tissue is desired, and 
the imaging system cannot directly measure the single-pass trans-
mission matrix from the object to the imaging system. A contempo-
rary major challenge, and the focus of the remainder of this Review, 
lies in approaches that can estimate T or Ein from non-invasive mea-
surements taken without accessing the object plane.

Adaptive optics and wavefront shaping. Adaptive optics. In the case 
where absorption is negligible, the scattering matrix is unitary, and 
can thus be interpreted as a rotation in a high-dimensional space3. 
If the full matrix is known or can be measured, scattering can be 

Box 1 | The optical memory effect

Multiple scattering turns the imaging PSF into an apparently ran-
dom speckle pattern. However, even after multiple scattering, the 
scattered light continues to contain correlations that can be ex-
ploited for imaging. One of these correlations that has recently 
found many uses in imaging is the so-called optical memory ef-
fect. A slight tilt of the illumination angle of a scattering medium 
results in an identical tilt of the speckle pattern at the medium’s 
output facet, keeping its internal structure rather than completely 
randomizing it. (see panel a in the figure in this Box)21,22. One can 
understand the origin of this effect by considering that illuminat-
ing a point on a facet of a diffusive sample with a pencil-like beam 
results in a bright, diffusive blur only around the illumination 
point. Thus, the transmission matrix of the sample in the spatial 
position basis, Trin ,rout, would be concentrated around the rin–rout 
diagonal. The angular correlations of the memory effect become 
visible through inspecting this transmission matrix in the Fourier 
(kin − kout, where k is the wave vector) basis (Fig. 2j)22,113. As the spa-
tial extent of the diffusive blur grows with L (the medium thick-
ness), the angular correlation range scales as ∝ λ/L.

An important consequence of the optical memory effect is 
that the PSFs from sources close to each other are similar, and 
thus the scattering from all sources within a given region (the 
isoplanatic patch) can be corrected with the knowledge of only 
a single PSF (see panel b in the figure in this Box). This forms 
the basis for most adaptive optics and several wavefront-shaping 

techniques (see the ‘Wavefront shaping’ section), as well as 
ultrasonic imaging24. Interestingly, the angular memory effect is 
also present in light propagation through multicore fibres, which 
opens the path to lensless diffraction-limited endoscopy (see 
panel c in the figure in this Box and the ‘Imaging through optical  
fibres’ section).

The major limitation of using the memory effect for imaging 
is its small field of view when imaging through thick samples. In 
such cases, the imaging field of view (FOV ≈

λ
πLd, where d  is the 

distance between the object and the front facet of the scattering 
medium) is too small for most applications. Nonetheless, the FOV 
can be larger when imaging an object located at a large standoff 
distance from a thin scattering layer (i.e. in an ‘eggshell’ geometry). 
A similar result is obtained for non-line-of-sight imaging ‘around- 
corners’ using light reflected from a scattering wall, where the 
angular memory effect range in reflection is Δθmem ≈ λ/(πℓt)22,69 
(for alternative approaches of non-line-of-sight imaging see 
ref. 114). The FOV can also be substantially larger when imaging 
through biological tissues at depths smaller than ℓt (ref. 115) or 
when time-gated measurements are used116.

Beyond angular correlations, additional inherent correlations 
are present in some scenarios. For example, anisotropic scattering 
in soft tissues of moderate thickness (compared with ℓt) gives rise 
to speckle correlations for transverse translations of the incident 
wavefront as well112,117.

a b c

A correlation exists between the columns of the scattering matrix in the k-space basis (Fig. 2k). This correlation manifests as: a, Plane waves that 
illuminate the medium at similar angles and produce similar speckle patterns, with the same angular shift as the illumination beams. b, Light from 
adjacent points is scattered into similar speckle patterns, with an angular shift between them. c, The same effect is also present through multicore 
fibres, and in back-scattering from complex samples such as white-painted walls.
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inverted not just computationally, but also physically, by apply-
ing an equal and opposite rotation using a wavefront correcting 
device with a sufficient number of controllable elements (degrees 
of freedom, or modes). Such a device can be realized by deform-
able mirrors or spatial light modulators (SLMs). This is the principle 
for correcting low-order aberrations by adaptive optics, which was 
pioneered for astronomical observations23 (Fig. 2f–h). Today it is 
possible to near-perfectly correct atmospheric distortions in astro-
nomical observations23 and isoplanatic sample-induced aberrations 
in microscopy34, as long as the number of controllable elements is 
larger than the number of scattered modes. The wavefront correc-
tion is determined by either measuring the wavefront distortions 
of light originating from one or several points located behind the 
aberrating medium—these are called guide stars—or by varying the 
correction to optimize an image metric34,35. The correction can be 
extended beyond a single isoplatic patch with the help of multiple 
guide stars and multiple SLMs or deformable mirrors.

Wavefront shaping. When the number of scattered modes, Nmodes, 
increases beyond the number of controllable degrees of freedom, 
NSLM—for example, in deep-tissue imaging, where the number of 
scattered modes can easily exceed 106—it becomes practically 

impossible to measure and correct all of the scattered modes. In this 
deep multiple-scattering regime, light forms complex speckle pat-
terns (Fig. 2i) and the scattering matrix stops being even approxi-
mately diagonal (Fig. 2j). However, it is still possible to manipulate 
the scattered light to a useful degree and form a high-contrast 
diffraction-limited focus on the target by enhancing the inten-
sity of a single speckle grain through constructive interference of 
the controlled modes (inset in Fig. 3b). Strikingly, even though 
NSLM ≪ Nmodes, as long as the controlled scattered modes are inde-
pendent, the intensity of the wavefront-corrected focus would be 
approximately NSLM times higher than the average intensity of the 
residual speckle background, which remains due to the imperfect 
correction36. Since hundreds to 105 modes are today routinely con-
trolled with state-of-the-art SLMs, high-contrast focusing that can 
be effective for imaging can be obtained, and the imperfect cor-
rection manifests only in a lower contrast compared with perfect 
focusing (inset in Fig. 3b). This fact forms the basis for the field 
of optical wavefront shaping37,38. The border between adaptive 
optics and wavefront shaping is not sharply defined, and a con-
tinuum exists between these extremes, which includes relevant  
applications such as the correction of low-order aberrations without 
undoing scattering34.
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If the scattering matrix is known, the correction wavefront for 
maximizing the focused intensity at a point rm on the target is given by 
phase-conjugating the mth row of the scattering matrix (in the canon-
ical basis): ESLM,in

n = s∗m,n, where the asterisk indicates the complex 
conjugate. The output field at rm would then be Em =

∑
nsm,ns∗m,n, 

and its intensity would be maximized because the phase-conjugated 
input effectively forms a matched filter for the scattering. However, 
when the scattering matrix is not known, the focusing SLM pattern 
can be found by an iterative search for the input wavefront that will 
form a bright focus after it is scattered. In its simplest implemen-
tation, directly—and invasively—measuring the intensity at the 
desired focus location39 provides the feedback for the iterative opti-
mization. A welcome side effect is that multiple scattering usually 
results in large scattering angles, which can be exploited to increase 
the effective NA of the focused wavefront, generating a focus with 
dimensions smaller than the diffraction limit of the optical system 
in free space32,40. In the near field, this scattering-lens effect can even 
be exploited for subwavelength focusing32,33, as first demonstrated at 
microwave frequencies41.

Devising schemes that provide non-invasive feedback for 
diffraction-limited focusing has been an area of intense research 
in recent years. The goal is to find the focusing wavefront with the 
help of measurements from detectors placed outside the sample  
(Fig. 3a). These state-of-the-art approaches make use of a large 
variety of physical mechanisms and computational methods14. 
Exploiting nonlinear signal generation mechanisms, such as mul-
tiphoton excitation of fluorescence or harmonic generation, allows 
diffraction-limited focusing by optimizing the total scattered non-
linear signal42–45. In the case of linear incoherent signal generation, 
such as fluorescence, using the scattered light image contrast as 
feedback for wavefront shaping can lead to focusing46,47, because 
when light is focused to a single point, the scattered fluorescence 
pattern has maximal contrast. Similarly, the correction wavefront 
needed to obtain a sharp focus can be non-invasively found by 
directly optimizing an image contrast metric48. When the signal 
originates from a relatively small number of fluorescent emitters, 
non-negative matrix factorization of a matrix containing measured 
scattered fluorescence patterns allows non-invasive focusing49. In 
the case of spatially coherent signals, the spatial autocorrelation of 
the scattered light pattern can be used as a feedback mechanism for 
focusing, exploiting the memory effect50.

Non-invasive focusing can also be obtained by computational 
decomposition of the reflection matrix, using either singular value 
decomposition13,51 or more advanced computational algorithms that 
aim to decompose the scattering at the excitation and detection paths52. 
If the structure of the scattering medium can be measured or mod-
elled, the correction wavefront can be estimated computationally53.

The major drawback of iterative optimization or matrix-based 
approaches is that they require a large number of sequential mea-
surements—equal to or larger than the number of controllable 
modes—to determine the focusing wavefront. This limitation can 
be sidestepped by leveraging the time-reversal symmetry of mul-
tiple scattering: if the multiply scattered wave produced by a point 
source is measured and time-reversed, it will propagate back to 
focus at the original source position, which allows focusing using 
a single-shot wavefront measurement. This was first demonstrated 
for multiple scattering compensation in acoustics by time-reversal 
mirrors24 and in optics by nonlinear crystals54. In recent years, digi-
tal phase conjugation using computer-controlled SLMs has replaced 
the analogue nonlinear crystal-based approach, as digital phase 
conjugation offers simplicity and flexibility not only for coherent 
scattered light55, but also using nonlinear56 and fluorescence57 sig-
nals. The downside of direct phase-conjugation is the requirement 
for a point source ‘guide star’ at the target plane.

Optical imaging in soft tissues can leverage the fact that acoustic 
waves essentially do not experience scattering to produce guide stars 

on demand. Such ultrasound-mediated guidance can be realized in 
two ways: either via ultrasonic detection of acoustic signals gener-
ated by the photo-acoustic effect, following optical absorption58, or 
using localized acousto-optic modulation of light by focused ultra-
sound59. Similarly to all-optical techniques, focusing can be achieved 
via iterative optimization60,61, by computational analysis of a pho-
toacoustically or acousto-optically measured scattering matrix62,63 
or via phase conjugation59. The major drawback of acousto-optic 
and photo-acoustic guide stars is that their dimensions are dictated 
by the acoustic wavelength—orders of magnitude larger than the 
optical diffraction limit. Reducing the size of the acousto-optically 
guided focus can be effectively achieved by iterative phase conjuga-
tion64, whereby the phase conjugation and acousto-optic modula-
tion process is repeated several times, shrinking the size of the focus 
in each iteration. Mathematically, iterative phase conjugation is 
equivalent to raising the scattering matrix to the power of the num-
ber of iterations. Repeating the process is therefore equivalent to 
finding the highest singular value of the scattering matrix. The same 
result can thus be obtained by injecting the first singular vector of 
the scattering matrix, as was first realized in acoustics65, and put to 
use in all-optical51 and acousto-optical63,66 approaches.

When non-monochromatic light focusing is required (for 
example, when ultrashort pulses are used for multiphoton excita-
tion) scattering may also induce temporal distortions, which will 
require correction in addition to the spatial distortions. Strikingly, 
temporal control can be obtained by controlling only the spatial 
degrees of freedom, as a result of the spatiotemporal coupling of  
multiple scattering67.

From focusing to imaging. The ability to form a focus by itself is not 
enough for imaging. However, it may enable imaging if the focus can 
be scanned over a sufficiently large FOV, effectively realizing a laser 
scanning imaging system. Such scanning is indeed directly possible 
within the limited FOV of the optical memory effect68 (Fig. 3b and 
Box 1). As an alternative to focus scanning, one can exploit the fact 
that, in most instances in optics, Helmholtz reciprocity allows the 
source and detector to be exchanged without changing the result. 
As a result, the memory effect also means that all the points within 
the isoplanatic patch can be corrected simultaneously by placing the 
SLM in the detection path instead of the illumination path. Thus, if 
the wavefront correction for a point is known, it is possible to use it 
to perform wide-field single-shot imaging69 (Fig. 3c).

Computational imaging through complex media. A very promising 
direction for imaging that does not require physical correction of 
scattering and can be implemented without a wavefront shaping 
device is the use of computational image reconstruction. As sug-
gested by Freund three decades ago22, memory effect-based imag-
ing can be possible even without a physical correction device. 
Most importantly, the memory-effect also allows imaging without 
knowledge or measurement of the scattering matrix. The first real-
ization in multiply scattering media was demonstrated by scanning 
unknown, but correlated, speckle patterns over a fluorescence target 
(see panel a in the figure in Box 1) and recording the total fluores-
cence signal excited by each pattern70. The measured intensity of 
the fluorescence signal is proportional to the overlap between the 
speckle pattern and the target object, and its intensity as a function 
of scanning angle therefore provides the convolution of the object 
with the unknown speckle pattern. As the spatial autocorrelation 
of a speckle pattern is a diffraction-limited peak20, the autocorrela-
tion of the scan trace provides the target object autocorrelation, and 
the object image can be computationally reconstructed via phase 
retrieval71 or bi-spectrum72 reconstruction techniques adapted from 
astronomy. Thanks to Helmholtz reciprocity, a similar measurement 
can be performed in a single shot45,73 (Fig. 3c), bringing Labeyrie’s 
stellar speckle interferometry74 from astronomy to complex media.
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The FOV limitation of the memory effect can be overcome by 
stitching multiple measurements, with each measurement imaging 
a FOV smaller than the isoplanatic patch size. This was recently 
demonstrated by decomposition of the reflection matrix to several 
isoplanatic corrections25,75, non-negative matrix factorization of the 
fluorescence scattering matrix49 and sequential acousto-optic mod-
ulation of small isoplanatic patches76. Such advanced computational 
reconstructions not only allow a wider FOV, but also provide a more 
stable convergence compared with iterative phase retrieval.

Computational reconstruction approaches have also been 
put forwards to improve the resolution of acousto-optic and 
photo-acoustic tomographic techniques. Random dynamic speckle 
illumination can improve the imaging fidelity and resolution of 
photo-acoustic and acousto-optic tomography77–79, as randomly 
fluctuating speckle grains allow the adaptation of super-resolution 
optical fluctuation imaging (SOFI)80 to ultrasound-mediated imag-
ing. Flow-induced fluctuations were also utilized for super-resolved 
photoacoustics, either via SOFI81 or by localization of flowing 
absorbers82–85. These approaches surpass the acoustic resolution and 
allow a very wide FOV but generally do not reach the optical dif-
fraction limit.

Deep-learning neural-network-based approaches for imaging 
using scattered light are still in their infancy, but carry great poten-
tial to improve the reconstruction fidelity while alleviating the 
requirements for exact modelling, the number of measurements 
and the accuracy and stability of the optical set-up. Similar to scat-
tering matrix-based approaches29, deep learning can be applied to 
solve the inverse problem of recovering the object information from 
a dataset of scattered light measurements86–89, effectively incorporat-
ing learned regularization, better estimation of the scattering matrix 

and generalization of speckle correlations. However, because coher-
ent light propagation and speckle patterns are not present in most 
common imaging problems, the conventional network architectures 
used in those situations may not be optimal for imaging in complex 
media. To go beyond the performance of non-deep-learning scatter-
ing matrix-based approaches, recent deep-learning works utilized 
a hybrid model-based or physics-informed network architecture90, 
allowing not just the object information, but also the parameters of 
the optical set-up to be retrieved91,92.

Imaging through optical fibres
While one would always prefer imaging techniques to be 
non-invasive, this is not always possible. For imaging at very large 
depths, absorption ultimately limits information transmission 
and minimally invasive techniques (such as endoscopy) that are 
based on the insertion of a small-diameter probe to bypass scat-
tering and absorption are used93. Fibre-based microendoscopes 
are a common solution. However, their diameter is typically 
larger than the imaged FOV due to the use of lenses or scanners 
at the distal fibre end or aberrations in graded-index rod lenses.  
A lensless endoscope, based on a small-diameter bare fibre,  
is thus a highly attractive solution.

As the scattering matrix formalism also describes light propaga-
tion through optical fibres, the same techniques used for focusing 
and imaging in complex media can be employed to realize lens-
less bare-fibre endoscopes. The reason that the scattering matrix 
of the fibre is required to reconstruct the optical field at the distal 
end from its measurements at the proximal end is that multimode 
propagation through a fibre—be it a multimode fibre or a multi-
core fibre—induces different phase accumulation for the different 
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modes, resulting in a complex speckle pattern similar to the one 
produced by multiple scattering94.

While an image was first projected through a multimode fibre 
in the 1960s95, measuring the transmission matrix of a fibre only 
became feasible with the advent of digital holography and wave-
front shaping96,97. As in complex media, imaging can be performed 
computationally98 or by scanning a wavefront-shaped focus97,99. 
However, unless the fibre is kept static (for example, fixed inside a 
stiff needle) its transmission matrix will change upon any bending 
or even temperature change100. Thus, non-invasive in situ calibration 
is a requirement for imaging through flexible fibres. As in complex 
media, non-invasive focusing and imaging are possible by using a 
nonlinear guide star101, decomposing the reflection matrix102 or by 
placing engineered reflecting layers next to the distal fibre tip103,104. 
Imaging in multimode fibres can be performed through knowledge 
of the entire matrix or partial knowledge of the transmission matrix 
by exploiting the rotational memory-effect present in cylindrically 
symmetric (unperturbed) fibres105,106. Alternatively, if the precise 
structure and bending of the fibre are known, it is possible to pre-
dict the changes in the transmission matrix100. Designing fibres with 
reduced sensitivity to bending is also an ongoing effort107,108.

Fibre bundles composed of thousands of individual few-mode 
fibres (Fig. 3c) are especially interesting systems, as the small cou-
pling between cores leads to a propagation that is analogous to a thin 
scattering layer (or diffuser). They thus possess the conventional 
angular memory effect, and it is possible to exploit it in similar fash-
ions as for scattering media99,109. It is worth mentioning that, although 
single-mode fibres have only one spatial degree of freedom, imag-
ing information can nonetheless be transmitted in their spectral (or 
equivalently, temporal) degrees of freedom by placing a spatiospec-
tral encoder at the distal end of the fibre110. As in scattering media, 
deep-learning-based approaches have found use in computational 
imaging through fibres and are the subject of intense research87,111.

Figure 4 presents some recent results for diffraction-limited 
non-invasive imaging through complex media, either via physical 
correction (Fig. 4a–c) or computational reconstruction (Fig. 4d–f).

Discussion
Scattering in complex media makes imaging information diffi-
cult to retrieve. Until recently this was an intractable problem, but 
advances in the available technology, computational approaches and 
our understanding of multiple scattering have led to a proliferation 
of new techniques and surprising results. These approaches have 
emerged from different communities, and are often useful in differ-
ent regimes. As a result, the nomenclature, formalism and descrip-
tions may vary considerably from one community to another. This 
may intimidate newcomers, but, as is often the case, the various 
techniques are more similar than they seem to be on the surface. 
The scattering matrix formalism provides a unified framework to 
describe the different approaches, highlighting the similarities and 
encouraging communication between fields.

The topic of imaging in complex media has evolved rapidly, pro-
ducing many astonishing results, but with a few exceptions these 
results have not yet percolated to the wider imaging community. 
One major reason for this is that many approaches only work well 
in some very specific circumstances, which those working on 
real-world applications may find too restrictive. Therefore, a major 
challenge that needs to be tackled in the near future is how to over-
come this gap. This will necessitate technological advancements, 
including faster measurements and more sensitive detectors, to 
allow the measurement of the S matrix within the sample decorrela-
tion time, but mostly it will require ideas from fields that approach 
the problem from different directions to be combined.

That said, it is unlikely that a universal technique, able to per-
form imaging in all scattering regimes, will ever be found. What 
is more likely is that a number of techniques will be developed, 

each suitable for a specific real-world situation—making a uni-
fied framework and ease of communication between fields even  
more important.
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