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The scattering strength of a random medium relies on the geometry and

spatial distribution of its components as well as on their refractive index.

Anisotropy can, therefore, play a major role in the optimization of the scat-

tering efficiency in both biological and synthetic materials. In this study, we

show that, by exploiting the coherent backscattering phenomenon, it is poss-

ible to characterize the optical anisotropy in Cyphochilus beetle scales

without the need to change their orientation or their thickness. For this

reason, such a static and easily accessible experimental approach is particu-

larly suitable for the study of biological specimens. Moreover, estimation of

the anisotropy in Cyphochilus beetle scales might provide inspiration for

improving the scattering strength of artificial white materials.
1. Introduction
An object is opaque white when the light incident on it undergoes multiple

scattering events before exiting the medium, i.e. when the object is optically

thick [1]. The optical thickness is defined as the ratio between the physical thick-

ness of an object and the transport mean free path (‘t), namely the distance that

light travels before losing information about its starting propagation direction

[2,3]. Commonly, ‘t is of the order of tens of micrometres in low-refractive-

index white materials [4,5]. Therefore, opacity is only achieved for relatively

large thicknesses (of the order of hundreds of micrometres) to allow a sufficient

number of scattering events.

Nature, however, provides a different approach that can serve as an inspi-

ration for the manufacturing of polymeric, thin but still opaque white materials

[6–8]. In particular, the brilliant whiteness shown by the Cyphochilus beetle is

known to be generated by multiple scattering of light inside the extremely thin

scales (≃7 mm thick) that cover its exoskeleton (figure 1a,b) [4,9–12]. The beetle’s

intra-scale structure is composed of a nanostructured network of chitin filaments

with a filling fraction of around 45% [13]. The chitin fibres inside the beetle scales

are organized anisotropically, i.e. mainly oriented parallel to the surface of the

scales (figure 1c). This structural anisotropy increases the scattering strength in

the orthogonal direction to the scale surface, at the expense of the in-plane scatter-

ing, which is not as relevant for the total reflectance of the insect [12]. With such

morphology and geometry, the beetle achieves high total reflectance (about 70%

over the whole visible range) with a thin, lightweight and anisotropic network

made of low-refractive-index material [4,12,13].

In recent years, a number of different techniques have been used to characterize

anisotropic media; for example, spatially resolved reflectance [14,15], imaging dif-

fuse transmission [12,16,17], spatio-temporal visualization of transmitted light [18]

and coherent backscattering (CBS) [19–22]. As of yet, the accuracy in determining

the in-plane and out-of-plane components of the light transport mean free path in
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(a) (b) (c)

Figure 1. Images of a white beetle at different magnifications: (a) photograph of the Cyphochilus beetle; (b) micrograph of the organization of the scales; (c) SEM
image of a cross-section of a Cyphochilus scale showing the interconnected network of chitin filaments which is responsible for the white appearance of the insect.
Scale bar: (a) 1 cm, (b) 200 mm and (c) 1 mm.
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Cyphochilus beetle scales has been limited by the strong thickness

dependency of the experimental techniques used [4,12].

In this study, we showed that the CBS technique is well

suited for studying the scattering properties of biological

samples, allowing the anisotropy of a system to be estimated

without the need to change its orientation or its thickness.

Moreover, the CBS provides a precise evaluation of the

in-plane transport mean free path without requiring samples

with different thicknesses, in contrast with other static and

easily accessible techniques. Our experimental results contrib-

ute to the understanding of scattering optimization in

Cyphochilus beetle scales, providing a valuable guide for

the development of novel sustainable materials by showing

how to obtain a strong optical response while using a

low-refractive-index biopolymer as a building block.
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Figure 2. (a) Illustration of two counter-propagating photons, red and light
blue arrows. For simplicity, the scattering centres are represented as spheres.
(b) Schematic of the CBS set-up in an HC configuration: the red dashed lines
define the cone of backscattered intensity, while the grey line represents the
detection rotation. The sample was mounted on a rotation mount, whose axis
was perpendicular to the propagation direction of the laser beam, to average
over different disorder realizations.
2. Results and discussion
To characterize light propagation in Cyphochilus scales, we per-

formed a CBS experiment. We measured the angularly resolved

light scattered by the sample around the backscattering direc-

tion, which shows a characteristic peak profile [23]. The CBS is

the Fourier transform of the spatial distribution of light exiting

the sample in the backscattering direction [3]. This phenomenon

is often understood as an interference effect that originates from

the superposition of a large number of two-wave interference

patterns from reciprocal waves [23–27]. These waves have tra-

velled the same optical path inside the medium but in

opposite directions (figure 2a) and are therefore phase-related.

The resulting CBS intensity distribution has a conical shape

whose width provides a direct measurement of the light

transport mean free path of the material [3].

The experimental set-up is shown in figure 2b. A collimated

laser diode (peak wavelength of 635 nm, spot size of 2.5 mm

and output power of 1.2 mW) was used as the light source.

The scattered signal was focused, using a parabolic mirror, on

a 100 mm core fibre connected to a spectrometer. The angular

resolution of our set-up was ≃0.25 mrad. To acquire the CBS

line shape, the speckle pattern, which occurs as a result of the

high spatial coherence of the light source, needs to be averaged

out [26]. This was done by placing the sample on a motorized

rotation mount whose axis was the same as the propagation

direction of the incoming laser beam. This averaging procedure

precludes the possibility of investigating a potential in-plane,
xy, anisotropy. However, it has recently been shown that the

Cyphochilus scales are characterized by an isotropic spectral

density in the xy-plane [13]. For this reason, our study focused

only on the study of out-plane anisotropy.

The enhancement factor of the coherent signal, i.e. the ratio

between the intensity at the exact backscattering angle and the

incoherent background, strongly depends on the polarization.
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Figure 3. The theoretical fit of the experimental data (blue dots) using the iso-
tropic theory for semi-infinite (light blue dashed line) and finite (red solid line)
media. Both curves were normalized to the maximum value of the semi-infinite
theory. The experimental points were obtained by normalizing the signal
measured in the HC configuration to that acquired in the LNC set-up.
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This is maximized when the single-scattered photons, which

do not have a reciprocal counterpart and therefore contribute

only to the incoherent background, are filtered out. This can

be done by acquiring the CBS in the helicity-conserving (HC)

channel (figure 2). The HC signal was then normalized to the

one acquired in a linear non-conserving (LNC) configuration,

as discussed in [28].

The measured CBS signal is reported in figure 3. The exper-

imental data show a maximum lower than the theoretical value

for semi-infinite media of 1 and a rounded top. This deviation is a

consequence of the small thickness of the Cyphochilus scales and

can be described by the isotropic theory for finite media [29]

gc ¼3ebv[cosðbuÞ
"
ðn� ðn� aÞ coshð2zeaÞ

ðn� aÞ2 þ u2

 !

þ ðn� ðn� aÞ coshð2zeaÞ
ða� nÞ2 þ u2

 !#

þ sinðbuÞ u

ðaþ nÞ2 þ u2
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ðn� aÞ2 þ u2

 !
sinhð2zeaÞ

þ ðn� aÞcoshððn� aÞb� 2zeaÞ � ncoshððn� aÞbÞ
ðn� aÞ2 þ u2

þ ðnþ aÞcoshððnþ aÞb� 2zeaÞ � ncoshððnþ aÞbÞ
ðaþ nÞ2 þ u2

,

ð2:1Þ

where m ¼ cos (u), n ¼ 1=2(1þ 1=m), u ¼ k‘t(1� m), a ¼
k‘t sin (u), B ¼ bþ 2ze The parameters k, ‘t and b are the wave-

vector, the isotropic transport mean free path and the optical

thickness, respectively. For semi-infinite media, i.e. b!1,
equation (2.1) reduces to [29]

gc,semi ¼
3½aþ nð1� e�2zaÞ�

2amn½ðaþ nÞ2 ¼ u2�
: ð2:2Þ

The reduction of the theoretical maximum in finite media is

caused by the suppression of long light paths, which are respon-

sible for the formation of the cusp of the CBS profile for semi-

infinite media [2]. To accurately determine the transport mean

free path, the effect of the internal reflections at the scale interface

on the light path distribution inside the chitin network was

accounted for in the extrapolation length, ze¼ (2/3)(1 þ R)/

(1 2 R) [30–32]. R is the angle- and polarization-averaged
reflection coefficient at the slab interface and can be obtained

by an angular integration of the Fresnel coefficients [31,33].

These coefficients depend on the effective refractive index (ne)

of the chitin network, which was estimated by the Maxwell–

Garnett theory [34]. The expression of ze used in this study,

and in the related literature regarding the study of the

Cyphochilus beetle, is the one derived for isotropic systems. This

approximation is justified by the absence of an analytical formula

for the extrapolation length in anisotropic media [35].

Using a filling fraction of (45 + 6)% [13], we calculated

that ne ¼ (1.22+0.03), R ¼ (0.32+0.04) and ze ¼ (1.29+
0.11). Finally, using the extrapolation length found from the

expression above, we obtained ‘t ¼ (1.40 + 0.09) mm from

the fit shown in figure 3.

In the literature, the isotropic theory has been used to

obtain information about media in which the anisotropy is

in the plane perpendicular (xy) to the incoming beam

(z-direction) [19,22]. This type of anisotropy gives rise to a

CBS cone whose line shape differs when acquired along the

x- and y-directions [22]. It has recently been shown that the

isotropic theory cannot be used to obtain quantitatively

reliable information about the anisotropic light transport

along perpendicular directions [35]. However, the anisotropy

can be qualitatively estimated as the ratio between the widths

of the CBS line shapes acquired along the x- and y-directions,

which can be individually described by the isotropic theory

[22]. Similarly, in the case of birefringent media as nematic

liquid crystals, the isotropic theory can be used to describe

the CBS line shapes originating from different polarization

configurations [20].

In the case of the Cyphochilus beetle, the anisotropy is in the

xz- and yz-plane (defining z as perpendicular to the surface of

the scales) [12,13] and therefore the resulting CBS profile is iso-

tropic (for light incoming along the z-direction). Owing to the

particularly small thickness of the scales (≃7 mm), the probing

direction of the incoming beam cannot be changed.

As the anisotropy cannot be investigated directly, to gain

insight into the light transport inside the scales we performed

anisotropic Monte Carlo simulations for scalar waves. A

Monte Carlo technique is well suited for describing light

propagation in disordered media, where the photon paths

can be mathematically mapped into random walks [2,3,36].

Monte Carlo simulations have been extensively used both

to investigate theoretical aspects of anisotropic diffusion

[14,35,37–40] and to accurately describe experimental results

regarding light propagation in anisotropic media [15,19,21].

Here, the photons paths in the white beetle scales were

modelled by a series of random steps [41]. The anisotropy of

the system was introduced via a direction-dependent step

size, i.e. the components of the step vector were sampled

from two different negative exponential distributions with

mean ‘xy and ‘z for the in-plane and out-of-plane components,

respectively. The angular component of each of the random

steps was sampled from a distribution of points uniformly dis-

tributed on the surface of a unit sphere [42,43]. The collection of

the initial and final positions of the walkers that escaped the

material from the same face they entered it, which corresponds

to reflected photons, was then used to reconstruct the CBS line

shape [3,29]. The effect of residual absorption on the CBS line

shape is not considered, owing to the negligible absorption

of chitin in the visible [44]. The only parameters required for

our Monte Carlo simulations are the distribution of the

random steps, the thickness of the scales and the reflection
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Figure 4. Monte Carlo simulation of the CBS line shape by an anisotropic
medium: (a) illustration of the simulation parameters, (b,c) varying the in-
plane and the out-of-plane components of the mean free path. For both
simulations the thickness of the slab (L) was fixed at 15 mm. (d ) Fit of
the experimental data with the anisotropic simulation. All the simulations
were performed using 1 million photons. The simulated curves were
normalized to the maximum value of a simulation with OT ¼ 1000.
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coefficient at the scale interface (R). A schematic of the

simulation parameters is illustrated in figure 4a.

Figure 4b,c shows how the CBS line shape is affected by

changing both the in-plane (‘xy) and out-of-plane (‘z) com-

ponents of the transport mean free path. In particular, ‘xy

determines the width of the CBS profile, while the optical

thickness, defined as OT ¼ L/‘z (where L is the thickness of

the medium), specifies the enhancement of the coherent

signal. These results can be qualitatively explained by the

fact that the CBS depends only on the distance between the

positions of the first scattering event (when the photon

enters the medium) and the last (when the photon exits the

medium). When a large number of photons is considered,

these two positions have on average the same z-coordinate

(which is of the order of ‘z), and therefore their distance

can be considered to be z-independent. However, as dis-

cussed previously for the isotropic theory, when the optical

thickness of the medium is small (i.e. when long light paths

are not allowed by the finite thickness of the medium) the

top of the CBS is rounded. The limited influence of the optical

thickness on the width of the CBS line shape allows a precise

value of ‘xy to be obtained without requiring samples with

different thicknesses. By fitting the experimental data with

the Monte Carlo simulations, it is possible to disentangle

the contribution of ‘xy and ‘z to the CBS line shape. In par-

ticular, we obtained a value of ‘xy ¼ (1.40 + 0.09) mm and

an optical thickness (OT) ¼ (6.89 + 0.13). The data were
fitted by minimizing the x2. The errors in ‘xy and OT were

estimated by performing simulations in which the two

parameters were gradually changed. This procedure was

then repeated to take into account the uncertainty in the

determination of the reflection coefficient (R).

The measured optical thickness is in good agreement with

the total transmission data reported in the literature [4,12].

The total transmission (T ) for slab geometry media in the

diffusion approximation is

T ¼ 2ze

Lþ 2ze
, ð2:3Þ

where L is the slab thickness. Equation (2.3) is the limit for

negligible absorption of the expression derived in [45].

Using T ¼ (0.29 + 0.02), as reported in [4,12], and the extra-

polation length previously calculated we obtained OTlit ¼

(6.3 + 1.2), which is consistent with what we measured.

From the measured OT and assuming L ¼ (7 + 1) mm,

where L and its error represent the mean and 1 s.d. of the distri-

bution reported in [12], we obtained ‘z¼ (1.02 + 0.15) mm. The

error in ‘z, which is mainly determined by the uncertainty in the

thickness of the sample, can be affected by systematic errors

given by surface roughness and curvature [3,46,47]. Comparing

‘z with ‘xy, the measured optical anisotropy (OA) is

OA ¼
‘xy � ‘z

‘z
¼ ð0:37 + 0:24Þ: ð2:4Þ

Our experimental result is in agreement with the three-dimen-

sional reconstruction of the chitin network reported in [13],

which predicts OA ≃ 0:5.
3. Conclusion
In conclusion, we demonstrated that the transport mean free

path and OA of light in the Cyphochilus beetle scales can be

determined by measuring the CBS and that the results are in

agreement with the one predicted in [13]. Exploiting the CBS

effect provides a measurement of the OA which describes

more accurately the scattering properties of the Cyphochilus
beetle than the results reported in the literature. In addition,

the experimental technique reported here allows the anisotropy

of a system to be estimated without the need to change its orien-

tation or its thickness, making the CBS a technique particularly

suitable for the study of biological specimens.
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