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Abstract
Aperfectly collimated beam can be spread out bymultiple scattering, creating a speckle pattern and
increasing the étendue of the system. Standard optical systems conserve étendue, and thus are unable
to reverse the process by transforming a speckle pattern into a collimated beamor, equivalently, into a
sharp focus.Wavefront shaping is a technique that is able tomanipulate the amplitude and/or phase
of a light beam, thus controlling its propagation through suchmedia.Wavefront shaping can thus
break the conservation of étendue and, in principle, reduce it. In this workwe study howmuch of the
energy contained in a fully developed speckle pattern can be converted into a high quality (lowM2)
beam,we support it with a theoretical framework and discuss the advantages and limitations of this
approach.

1. Introduction

Reflective and refractive optics, such asmirrors and lenses, can be used tomanipulate light propagation inmany
ways, but there are limitations inwhat they can do. For instance any number ofmirror and lenses will always
conserve the étendue of the system,which quantifies how ‘spread out’ a beam is in both area and angle. As a
result it is always possible to produce awide collimated beam from the light coming froma very small source,
trading area for angular spread, but one can not create a sharp focus from awide source that has a large angular
spread. There are of course exceptions to étendue conservation: for instance it is trivial to increase it by placing a
diffuser in the optical path [1]. It is also trivial to reduce it by placing a pinhole in the randomized beam, but this
comes at the cost of huge energy losses. This works also for perfectly coherent light, wheremultiple scattering,
e.g. biological tissues, will increase the étendue and result in a seemingly random speckle pattern [2, 3].

In recent years wavefront shaping techniques have emerged as amethod capable of reducing the étendue of a
systemdominated by elasticmultiple scattering, controlling the propagation of light in disorderedmedia [4–6]
bymeans of amplitude and/or phasemanipulation of the light beam. These techniques were originally proposed
to focus light through a scatteringmaterial [4], and have since proved very useful in different fields such as
imaging [7–11], enhancing energy delivery [12–14] or cryptography [15, 16]. In principle wavefront shaping
techniques should be able to completely control the propagation of light in a disorderedmedium and even
reverse the effect of scattering, thus strongly reducing the étendue.However in practice this is not possible due to
the limited number of degrees of freedom available in existingwavefront synthesizers or Spatial Light
Modulators (SLM). Traditionally wavefront shaping has been carried out over uniform illumination, that is, an
homogeneous beam impinging on thewavefrontmodulator. Under this assumption, both the ideal and
expected value for the intensity enhancement (ratio between the intensity at the optimized spot and the intensity
before optimization)have been discussed in the literature, togetherwith the effect of several possible limiting
factors (e.g. sample stability, phase/amplitude onlymodulation etc.), parameters of great relevancewhen
designing an experiment [5, 17, 18].

In this workwe use a fully developed speckle pattern as inhomogeneous illumination on the spatial light
modulator.We experimentally demonstrate that, usingwavefront shaping, it is possible to convert a fully
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developed speckle pattern into a diffraction limited spot, significantly reducing its étendue.We discuss in detail
the theoretical description, advantages and limitations of this approach, and in particular howmuch of the total
energy can be placed in the focus, and how this is connected to the intensity enhancement and its probability
distribution.

2. Converting speckle to a focus

Multimode fiber-based lasers are compact and robust, and thus excellent candidates to generate high power.
These lasers can achieve high power outputs at very narrow linewidth, whichmakes themvery appealing for
different applications [19, 20]. However for some spectral regions, in order to achieve high powers, overheating
can only be avoided bymaking use ofmultimode opticalfibers. The problemwithmultimode fibers is that each
mode propagates at a different speed, resulting in a random speckle pattern and hence poor beamquality.
Traditional solutions to improve the beamquality involve placing a pinhole or a singlemode fiber so as tofilter
one spot from the speckle pattern, but both are extremely energy inefficient and negate the power gain by
employingmultimode fibers [21].Wavefront shaping can be used to imprint a phase profile on a gaussian beam
that compensates for themode dispersion in the fiber, thus producing a sharp focus at the distal end [22]. As
speckle patterns are, despite their appearance, spatially coherent [2], it should be possible to usewavefront
shaping to refocus them. The problem is that when this inhomogeneous speckle pattern reaches the spatial light
modulator, to retrieve the same outputs achievedwith homogenous illumination, wewould require both
amplitude and phasemodulation, with the amplitudemodulation being able to amplify the signal coming from
the areas of low or zero intensity of the speckle pattern, which is outside the capabilities of any realistic wavefront
shaping scheme. A complete study of an efficient refocussing of a fully developed speckle pattern, such as the one
emerging from amultimode fibre, has not been demonstrated yet, to the best of our knowledge, and it is the
focus of the present report.

A schematic of the experimental setup is shown infigure 1. The experiment was done using aHe–Ne laser
(632.8 nmat 6mW) coupled to a step-indexmultimode fiber (core diameter 550 μm,NA= 0.22) and aDigital
MicromirrorDevice (DMD) as SLM (VialuxDLPDiscovery 4100, Texas Instruments). DMDs are amplitude
modulators, but they can also be used tomodulate phase using holographic techniques such as LeeHolography
[23].We preferred phasemodulation over amplitudemodulation as phasemodulation ismore efficient for
wavefront shaping [6]. The output of themultimode opticalfiber is collimated and sent to the SLM to shape the
beam. A second lens collects themodulated beamand focuses it. The total intensity in the focus is used as the
metric for the optimization, as widely used in the literature for evaluating the quality of thewavefront shaping
technique [5].We place a 100μmdiameter pinhole acting as a spatial filter on the focal plane, and compare the
amount of light that can be concentrated in that areawith andwithout wavefront shaping (figure 2).

To evaluate the beamquality of this and subsequent beams, we use the standardized beamquality factorM2,
which compares any beamwith an ideal Gaussian diffraction-limited beam [24]:

pw q
l

= ( )M , 12 0

whereω0 is the radius at the beamwaist (orwaist radius), θ the divergence angle andλ thewavelength of
the beam.

The beamwaist at the output of themultimode fiber (figure 2(a)) shows a speckle patternwith a large
number of diffraction limited spots. This results in a poor beamquality, with anM2 factor equal to 59± 5. If we
couple the beam to a singlemode fiber, we can readily obtain a diffraction-limited spot at the beamwaist
(figure 2(b)). In this caseM2= 1.4± 0.4, which is very close to the ideal value of 1 for a diffraction limited

Figure 1. Schematic of the experimental setup used to improve the beamquality of amultimode beambywavefront shaping. The
output of themultimode fiber is collimated and sent to the SLM,where the spatial phase distribution of thewavefront ismodified in
order to compensate for the random scattering of themodes in thefiber and create a collimated beam,which is then focused by a lens.
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Gaussian beam.However this process is extremely energy-inefficient as only a small fraction of the total energy
can be coupled to the singlemodefibre. For our setup, less than 0.5%of the power could be coupled in this way.
The same is true if one uses a pinhole to increase the beamquality: a 100 μmdiameter pinhole produces a good
quality beam (M2= 1.5± 0.3), at the expenses of energy efficiency, which is again reduced to less than 0.5%
(figure 2(c)).

To obtain both a high quality beam and good energy efficiencywe usewavefront shaping, i.e. we use a spatial
lightmodulator to imprint a position-dependent phase profile on thewavefront, such that constructive
interference is built at one chosen speckle spot, allowing us to depositmost of the available beam energy at that
place. Infigure 2(d)we show the result of usingwavefront shaping techniques to increase the intensity deposited
into a diffraction limited spot. In this experiment we achieved enhancement factors of 300± 13, i.e. the intensity
in the optimized spot became 300 times larger than the average intensity of any spot in themultimode beam
(figure 2(a)). In this case the improvement of theM2 factor changed from59± 5 to 1.2± 0.3.

The plot infigure 3 shows the increase in the intensity deposited in the filtered diffraction-limited spot as the
algorithmprogresses. The power of the filteredmode is normalized by the total power of the unoptimized
multimode beam. From this graphwe can see that the power deposited in the optimizedmode goes from an
initial value of the total intensity smaller than 0.5% (when considering a simple pinhole filtering) to a value that
varies between 23%and 25%of the total intensity when the transmission through the pinhole is optimized. The
maximum speed of this optimization depends on several factors such as the strength of the signal and the type of
processing used.Using aDMDas a spatial lightmodulator, a highly sensitive photodiode and implementing the
control algorithm in a Field ProgrammableGate Array (FPGA) thewhole system can reach optimization rates up
to 5 kHz, resulting in optimization times of approximately 5 seconds [22].

Figure 2. Images of the beamwaists at the focal plane of a 750 mm lens under different configurations. (a)Beamwaist of the output
from themultimode optical fiber, showing the speckle pattern of the beam. The beamquality factor isM2 = 59 ± 5. (b)Beamwaist of
the output of a singlemode fiber. The beamquality factor in this case is 1.4 ± 0.4. (c)Beamwaist of afiltered speckle spot using a
100 μmdiameter pinhole, acting as a simple spatial filter. The beamquality factor in this case is 1.5 ± 0.3. (d)This picture shows the
beam filtered through the pinhole after completion of thewavefront shaping optimization. The beamquality factor in this case is
1.2 ± 0.3.

Figure 3.The total intensity transmitted through the pinhole can be seen to increase with the number of iterations of the algorithm
until it reaches a plateau at approximately 24% after 24500 iterations.
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3. Fluctuations of the enhancement factor

If wavefront shapingwas ideal, including the ability to amplify the signal from the low intensity areas, one could
reach 100%energy efficiency. In practice this is not possible for any realistic scheme, and it is important to
quantify both the expected outcome and itsfluctuations. To do sowe study the optimal enhancement factor that
can be achieved under ideal wavefrontmodulation and illumination, presenting its probability distribution for
thefirst time, as well as themost adverse illumination and the factors that should be taken into account in order
to obtain an accurate experimental estimation of the enhancement factor in experimental conditions.

To quantify the optimal focusing efficiency, we can represent the scatteringmaterial by a transmission
matrix t, connecting the inputfields of thematerial to the output fields [25]. The outgoing scattered fields are
given by:

     
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )

E
E

E

t t t
t t t

t t t

E
E

E

...

...

...

2

o

o

oM

M

M

M M MM

i

i

iM

1

2

11 12 1

21 22 2

1 2

1

2

where Eo are the components of the outgoing field, Ei the components of the incident field and toi are the
elements of the transmissionmatrix connecting bothfields. The dimensions of the transmissionmatrixM are
given by the number of propagatingmodes supported by the sample, and these can be quantified by the number
of diffraction limited spots that are in the illuminated area at the entrance or input of the sample [5]. If the task is
to focus to one diffraction limited spot (or one outputmode), thefield contribution to that given spot is:

å= ( )E t E , 3of
j

N

fj ij

where Eoj is the field at the chosen output channel. The focusing figure ofmerit is the enhancement factor,
accounting for the intensity at the optimized spot with respect to the average initial intensity [4].

3.0.1. Optimal focusing enhancement factor
The focusing enhancement factor, η, is defined as the ratio between the intensity at the optimized speckle spot
and the average intensity at that spot when thewavefront is not optimized [4, 18]:

h =
á ñ

( )
I

I
, 4

f

f

where If is the intensity at the optimized speckle spot f and 〈If〉 is the ensemble averaged intensity at the same spot
over different realizations of disorder when thewavefront is not optimized. The following derivation is based on
[17, 18].We use equation (3) towrite the intensity at one speckle spot as:
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i

N
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2

The optimal value the intensity If in equation (5) can take is determined by theCauchy–Schwartz inequality:
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Themaximal intensity we are able to concentrate at one speckle spot is then given by the equality of these two
termsThe two terms are equal if the electric field = *E C ti fi where Î C and in our case is a normalization

factor: = å -( ∣ ∣ )C ti
N

fi
2 1 so thatå =∣ ∣E 1i

N
i

2 .We refer to the field satisfying the equality as Ẽi to indicate it is
the optimalfield for the desired output. The optimal intensity at the spot f is then given by:
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The ideal enhancement factor is then given by (complete derivation in appendix A):
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where tfi and ξfi are elements of the transmissionmatrix for the optimized and non-optimized fields, respectively.
If we average the optimal enhancement factor from equation (8), we retrieve the optimal average enhancement
derived originally byVellekoop [5]:
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há ñ =˜ ( )N 9

The expected value of the enhancement factor in equation (9) is widely used as a reference for the quality of a
wavefront shaping experiment, butwe do not expect all the experiments to give an enhancement factor equal to
this. As both tfi and ξfi in equation (8) can be seen as (correlated) randomvariables, also h̃ is a randomvariable
with its own distribution. Since the real and imaginary parts of the electric field are normally distributed [1], the
intensity is the sumof the two components squared: = +∣ ∣ ∣ [ ]∣ ∣ [ ]∣R It t tfi fi fi

2 2 2. Therefore these elements
follow a chi-squared distribution c2

2, or exponential distribution.
The distribution of the enhancement factor is then given by the sumof chi-squared distributed terms over

the average value of c2
2:

å
h

c
=

å

á ñ
=

⎜ ⎟
⎛
⎝

⎞
⎠( )

( ˜)
∣ ∣ ∣ ∣

( )P
P t

P t

2
. 10

i
N

fi i

N

fi2

2
2

2

It follows from the definition of chi-squared distributions that the sumofN termswith c2
2 distributions is also

chi-squared distributed, thus the distribution of the enhancement factor is given by c N2
2 . If we consider the

superposition of the two orthogonal polarizations, the resultant distribution is the sumof the two polarizations:
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whereN is the sumofmodesN=N⊥+N∥ and the factor
1

2
is given by the denominator in equation (10), as

cá ñ = 22
2 . This distribution has an average equal toN, as expected from9, and a standard deviation N . In

figure 4we show the normalized probability distribution of the ideal enhancement factor together with
numerical data for different values ofN.WhenN= 1we obtain the exponential decay in intensity, whereas
when two independentmodes are present, the Rayleigh distribution appears, as expected [2]. It is of particular
interest to note how, for small values ofN (easily achievable in the case of small core opticalfibers), the
enhancement factor can deviate significantly from themean value.When the number ofmodes ismuch larger,
as shown in the graph on the right, the distribution is closer to aGaussian, as a consequence of the central limit
theorem.

3.0.2. Imperfect enhancement factor
In the previous sectionwe discussed the focusing enhancement factor assumingwe can synthesize exactly the
wavefront that best suits our sample configuration (Ẽi). In practice, perfect control is not possible and therefore
themaximal enhancement is reduced by several experimental factors, such as the number of pixels of our SLM,
dictating the number ofmodes we can control, only phase or amplitudemodulation or one polarization control,
among others. All these experimental imperfections can be captured by the factor γ, the normalized overlap
between the ideal required optimal field and the experimentally synthesized field [5, 18]:

åg =
=

˜
˜

( )
*E E

II
, 12

i

N
i i

1

where Ĩ I, are the intensities of the ideal (Ẽi) and the experimental (or non-ideal)fields (Ei), respectively. The
experimental synthesized field can then bewritten as:

Figure 4.Probability distribution of the enhancement factor for different number ofmodesN. The solid lines represent the probability
distribution described in 11 and the dots are values obtained by repeatedly performing numerical experiments for the given number of
modes. On the left hand side graphwe show thewidening of the function as the numberN increases, converging towards amore
symmetric function. The graph on the right hand side shows the function for a large number of independentmodesN = 1000.
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g g= + - D˜ ∣ ∣ ( )E E E1 . 13i i i
2

whereΔEi is an error termperpendicular to Ẽi by definition.
Substituting equation (13) into equation (8), we obtain the experimental correction to the ideal

enhancement factor. The average experimental enhancement factor is given by:

h g h gá ñ = á ñá ñ + + á ñ∣ ∣ ˜ ( ∣ ∣ ) ( )1 142 2

where |γ|2 is called the fidelity factor.
Wavefront shaping has generally been used to transform a planewavefront into a randomone,

compensating the phase disturbance of the scattering sample it is incident on.However, in our case we are
interested in transforming a randomwavefront and convert it into a planewave. Although naively one could
think there is no difference between the two options, there are indeed two important differences between using
planewave or speckle illumination. Thefirst thing to take into account is the polarization.When speckle
patterns are generated as a consequence ofmultiple scattering of light, the original polarization is scrambled,
resulting in a patternwhere both orthogonal polarizations are roughly equally present. If we aim to control a
patternwhere both polarizations are present, we need to address them independently, given that they interfere
independently. If we only control one polarization, the total degrees of freedomone can control are reduced by a
factor of two, as per 11.

The second difference is that a speckle pattern hasmany areas of zero or low intensity. As realistic wavefront
shaping techniques are unable to amplify the intensity, little to no control can be achieved in these areas, and any
pixel on the Spatial LightModulator that happens to sit on a dark spot of the speckle patternwill not contribute
much to thefinal result. This can be accounted for by the fidelity factor [17, 18] in the form:

g = »∣ ∣ ( )A
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2
15a

i

i

2
2

2

where = + d
∣ ˜ ∣

A 1i
A

E
i

i
is the error in amplitude of the field over different incident channels and the over-line

represents the spatial average. Details about other contributions to the final enhancement factor are in
appendix B.

Finally, we compare the experimental and expected enhancement factors we obtained. For our system the
total number of degrees of freedom is given by approximately the number of speckle spots of themultimode
outputN≈ 2000. Given thatwe only control one polarization channel, this is reduced by factor of two, so that
the total number of degrees of freedomwe can initially control isNP= 1000, and therefore the ideal
enhancementwe could achieve h »˜ 1000. However there are other experimental factors such as amplitude

inhomogeneities due to speckle pattern illumination ( g =∣ ∣a
2 1

2
), phase-onlymodulation ( g » p∣ ∣ph

2
4
), temporal

decorrelation (|γt|
2≈ 0.9) and discrete phasemodulation (|γlee|

2≈ 0.98). All these factors accounting for
imperfections in themodulation result in an expected enhancement factor h h g= »˜∣ ∣ 3402 , in good agreement
with the experimental results, wherewe obtained η= 300, indicating that we have established a reliable
theoretical frameworkwhen speckle patterns are used as illumination forwavefront shaping techniques.

4. Conclusions

In this workwe demonstrated that wavefront shaping is an effective way to increase the beamquality from a
multimode fibre, and that it can increase theM2 factor of a fully developed speckle pattern similarly to other
traditional techniques (fromM2∼ 60 toM2 ∼ 1.2), but with the benefit of significantly smaller energy losses
(from a∼0.5% to a∼25% energy efficiency).We have analyzed in detail the theoretical framework and expected
performance of this approach, developing its connection to thefield enhancement and probability distribution.
This combined experimental and theoretical approach demonstrates that wavefront shaping is a viable
technique to improve the quality and efficiency of high-power fibre lasers.
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AppendixA. Enhancement factor under ideal illumination

Following the derivation of the enhancement factor from4–7, the optimal intensity at the spot f is given by:

å å å= =˜ ∣ ∣ ∣ ˜ ∣ ∣ ∣ ( )I t E t , A.1f
i

N

fi
i

N

i
i

N

fi
2 2 2

where the last simplification is due to the normalized incident field.
The non-optimized intensity can be described either as a different field impinging on the same scattering

medium (å ¢∣ · ∣t Ei
N

fi i
2) or as the same optimized inputfiled Ẽi impinging onto a different and uncorrelated

region of the sample, defined by a different transmissionmatrix ξfi.Wewill use the latter definition for
simplicity. In this way, the non-optimized intensity at the spot f is given by:

å å ååx x x x= = +
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In order to calculate the enhancement factor, we ensemble average the non-optimized intensity If over
different realizations of disorder. In this case, the term representing the disorder of the system are thematrix
elements ξfi, sowe obtain:
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Assuming different elements of the transmissionmatrix are uncorrelated, the second part of the sum reduces
to zerowhen averaged over a large number of realizations of disorder, and so the remaining averaged intensity is:

å åx xá ñ = á ñ = á ñ∣ ∣ ∣ ˜ ∣ ∣ ∣ ∣ ˜ ∣ ( )I E E . A.4f
i

N

fi i fi
i

N

i
2 2 2 2

given that 〈|ξfi|
2〉 becomes constant to a very good approximationwhen it is averaged over a large number of

realizations of disorder, the enhancement factor becomes:
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The average value of the enhancement factor is then given by:
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where the last simplification is possible given that thematrices t and ξ are uncorrelated and the average over
disorder of the absolute value squared is the same for both. Equation (A.6) recovers the results presented in [5].
This result has been broadly used in the literature as the reference optimal valuewhen focusing through
scatteringmedia. Although it is an excellent good estimate of what we can hope for, by just looking at the average
valuewemight bemissing important information, as discussed previously from the distribution of the
enhancement factor, given by equation (8) and depicted infigure 4.

Appendix B. Fidelity factor

Thefidelity factor is a combination of different independent experimental contributions [5, 18]. Themain
contributions to decrease the ideal value of the enhancement factor derived in equation (A.6) are phase-only
modulation |γph|

2, temporal decorrelation |γt|
2, among others. In table A1we show themore frequent

contributions to the totalfidelity factor, without deriving the full expressions. If detailed derivations are of
interest, Vellekoop or van Putten thesis are excellent references [17, 18]. The totalfidelity factor is a linear
combination of all the different contributions:

g g g g g g=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ). B.1cont ph t lee amp
2 2 2 2 2 2

AppendixC. Algorithm

The algorithmused for this experiment is a variation of a partitioning algorithm [26]. In principle one could
measure the effect of individual DMDpartitions in sequence to obtain the optimalmodulation; however, in
practice this yields a poor signal-to-noisemeasurement. Insteadwe select a random subset of approximately
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20%of the partitions andmodulate all in phase. Ideally wewould like to change each segment individually given
that they are independent, so as a trade off, we generate a randomphase pattern to start with, changing the phase
of approx 20%of the segments.When the optimization saturates, we reduce the fraction of partitions that are
modulated simultaneously, which allows the optimization to keep increasing at approximately constant speed.
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N

N
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Phase onlymodulation [4] g » p∣ ∣ph
2

4

Binary amplitudemodulation [6] g »
p

∣ ∣ba
2 1

2

Temporal decorrelation |γt|
2 = τC τC: decorrelation time

Discrete phasemodulation [27] g = p
p( )∣ ∣ ( )

lee
N

N
2 sin 2

st

st
Nst: number of phase steps

Non-uniform illumination [18] g =∣ ∣amp
A

A

2 a

a

2

2
= + d

∣ ∣
A 1a

A

E

a

a
id : amplitude error of thefield in channel a. The overline is a spatial

average
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