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We present the experimental observation of multiple resonance transport of light waves, due to necklace
states, in disordered one-dimensional systems. Transmission phase measurements allow us to identify these
states unambiguously and investigate their statistical properties. A theoretical model is developed to describe
the resonance statistics and the frequency dependance of the localization length.
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The transport of optical waves through disordered sys-
tems can exhibit remarkable interference effects, in analogy
with the transport of electrons in solids �1�. The most dra-
matic of all interference phenomena is maybe that of strong
localization. When a random system is strongly localized, the
system eigenfunctions decay exponentially �with a character-
istic length �, called the localization length� thus making the
diffusion coefficient vanish. This phenomenon, also known
as Anderson localization, was first described for Schrödinger
waves �2�, but has very general validity and is now being
investigated also for acoustic and electromagnetic waves �3�
and very recently even degenerate atom gases �4�. Anderson
localization has the extraordinary property that, when it oc-
curs, diffusive transport comes to a halt and a disordered
material starts to behave as an insulator. For optical waves
the phenomenon can even be utilized to obtain laser action in
a random system by using the Anderson localized states as
optical cavities �5�. In three dimensions the occurrence of
this phenomenon requires very strong scattering which, es-
pecially for optical systems, can only be achieved in selected
materials �6�. However, in one-dimensional �1D� and two-
dimensional systems it is possible to demonstrate that Ander-
son localization always occurs for large enough samples �7�.

Surprisingly enough, and against common belief, not all
modes are exponentially localized in 1D random systems,
even though Anderson localization occurs. In 1987, Pendry
�8� and Tartakovskii et al. �9� independently predicted the
existence of so-called necklace modes that can appear when
two or more spatially separated resonances are degenerate in
energy and thus hybridize to form a band. These states are
delocalized modes in an otherwise localized system and, al-
though rare, are predicted to dominate the average transmis-
sion �10�. Evidence for the existence of necklace states was
recently found in time-resolved transmission experiments
�11�, and subsequently also observed in experiments with
microwaves �12�.

In this paper we present the direct observation of multiple
resonance behavior of optical necklace states via transmis-
sion measurements of the optical phase. This also allows us
to determine the number of resonances that constitute each
optical mode and investigate their statistical behavior. We
can clearly identify necklace modes consisting of two and
three resonances in a large collection of otherwise single

resonance localized modes. In addition, we develop a model
that allows us to calculate the localization length analytically
and predicts the number of n-order necklace modes. Theory
and observations are in good agreement.

We studied, both experimentally and theoretically, binary
structures composed of N dielectric layers of two types �A
and B� with different refractive indices nA and nB and with
thicknesses dA and dB. In order to achieve strong scattering
of light, the thicknesses were taken such that 4nAdA=4nBdB
=�0=1500 nm and the disorder was introduced by giving
each layer a 50% probability to be of type A or B. The
samples were realized in porous silicon �details are described
elsewhere �11��. To obtain experimentally the amplitude and
phase of the transmission coefficient, we performed white-
light interferometry in the wavelength range 0.8–2.5 �m.
The cross-correlation inteferogram of the light passing
through the sample, which contains both phase and ampli-
tude information, was measured using a fixed Mach-Zehnder
interferometer coupled to a scanning Fourier-transform spec-
trometer �13�. Continuous phase spectra were obtained by
Fourier transform of the measured interferogram followed by
a standard unwrapping algorithm. The measured phase was
then corrected for the delay �in vacuum� corresponding to the
sample thickness, which was measured independently by a
1-�m-resolution comparator. This yields the absolute phase
delay introduced by the sample with a maximum experimen-
tal error of order of 10−2 rad at 1.5 �m wavelength.

In nonabsorbing systems, multiple resonant tunneling is
always characterized by a phase shift of � per resonance. It
is thus possible to discriminate necklace states from single
resonances through their phase response, independently of
the height of the transmission peak. In Fig. 1 the phase is
plotted together with the corresponding transmission spec-
trum. We observed that certain transmission peaks corre-
spond to a phase jump of multiples of �. These measure-
ments provide a direct proof of the existence of second and
third order necklace states in 1D random structures.

Modeling resonances as Fabry-Pérot cavities, we can ap-
proximate their line shape as Lorentzian in the limit of L
��. Considering various resonances to be independent �i.e.,
assuming that their spatial separation is much bigger than ��
we expect the line shape of necklace states to be a product of
Lorentzians. Fits of the measured spectrum show good
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agreement with such a model �as shown in Fig. 1�. In a large
series of measurements, we managed to define unambigu-
ously the nature of 114 peaks in three samples, finding
32 second order and eight third order necklace states. Given
the relatively high number of necklaces it was possible to
study also their statistics.

To first order, the probability distribution Pm of necklace
modes of order m can be calculated, neglecting the broaden-
ing due to mode repulsion. Pm can be estimated as the prob-
ability that m of the M resonances, in the spectral range S,
superimpose within their width �, leading to

Pm � ��
M

S
�m−1

. �1�

In Fig. 2 the appearance statistics calculated with this for-
mula is compared with the experimental results.

The average extension of a localized state is of length �.
Localized modes placed in the middle of the sample appear
as the narrowest and most intense ones in the transmission
spectrum. On the other side, modes that are close to the
sample surface will be associated with a low and broad trans-
mission peak. Modeling resonances as cavities in a 1D sys-
tem, the relation between the intensity transmission coeffi-
cient T and the full width at half maximum �1 of a single
resonance, can be calculated assuming that the angular dis-
placement of rays is small �14�. Using the fact that outside
the resonances the transmission decays as e−�/�, the following
parametric equations can be obtained:

�1 =
c

8��

2 − 2�1 − e−��/���1 − e��−L�/�

��1 − e−��/���1 − e��−L�/�
,

�2�

T =
e−L/�

�− 1 + �1 − e−��/���1 − e��−L�/��2
,

where L is the total length of the sample, c is the speed of
light in the medium, and � is a running parameter in the
interval �� ,L�. The presence of necklace modes is expected

to produce deviations from this distribution. Due to mode
coupling, necklace states are, on average, broader than single
localized modes. For resonances equally spaced in the
sample, the average width 	�m
 of an mth order necklace is
related to the average width 	�1
 of the single resonances as
�10�

	�m
 = e�L/2���m−1�/�m+1�	�1
 . �3�

This means that if we compare modes with the same
transmission coefficient T, we expect the spectral width � of,
e.g., a second order necklace mode to be about twice as large
as that of a single resonance mode. The distribution of modes
for various orders of necklaces should therefore be shifted to
higher � at increasing order number. In Fig. 3 we have plot-
ted the observed transmission coefficient of single reso-
nances and double and triple necklace modes versus �, to-
gether with the theoretical behavior. Since our equations for
� and T are exponentially sensitive to the exact value of L
and �, it is not possible to accumulate enough statistics
��1000 sample realizations� to predict the absolute spectral
width of the modes. A qualitative comparison, as in Fig. 3,
shows that the relative mode broadening is well predicted,
however. The data indicate that the presence of necklace
states indeed produces a strong deviation �red circles and
blue triangles� from the single resonance distribution �black
squares� and a shift toward larger �.

An important property of necklace states is that they
dominate the transmission distribution �9,10�. Since such
states are relatively rare, it is necessary to use a very big
ensemble to average the localization length correctly, which
is not always feasible in experiments �15�. On the other
hand, to compare experimental data with theory it is useful to
know the actual value of � in order to have no free param-
eters. It is thus useful to develop an analytical approach to

FIG. 1. �Color online� Amplitude �black dots� and phase �blue
solid line� of the transmission spectrum. The second and third order
necklace states were fitted, respectively, with a product of two and
three Lorentzians �red dashed line�.
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FIG. 2. �Color online� Comparison between the experimental
and expected �calculated� probabilities Pm of finding a necklace
mode of order m in a single 250-layer sample. Note the logarithmic
scale. The error bars on the calculated values are obtained by the
propagation of the uncertainty of microscopic sample parameters
through the formula, while the error bar on each measured value is
given by the square root of the value itself.
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calculate � over an infinitely large ensemble, i.e., evaluating
all possible single and multiple resonances. At present there
is still no general approach available although solutions for
some particular cases were proposed �16�. Here we derive an
analytical expression that relates the localization length � for
a binary multilayer system to the microscopic sample param-
eters. To that end, we use the ensemble average 	T−1
 from
the generalized second order single layer transfer matrix X�2�,
defined as the direct product of the two first order transfer
matrices �10�:

X�2� � X � X =�
1

�t*�2

2r

t2 � r

t
�2

0

r*

�t*�2

2

t2
− 1

r

t2 0

� r*

t* �2 2r*

t2
1

t2 0

0 0 0 1

� , �4�

where t and r are, respectively, the field complex transmit-
tance and reflectance of a group of N layers of the same kind
�A or B�. These parameters can be easily written as a func-
tion of the refractive index and the thickness of each layer,
using a standard transfer-matrix formalism �17�, as

tA =
1

cos�2�NnAdA

�
� − i�nB

2 + nA
2

2nAnB
�sin�2�NnAdA

�
� ,

rA =

− i�nB
2 − nA

2

2nAnB
�sin�2�NnAdA

�
�

cos�2�NnAdA

�
� − i�nB

2 + nA
2

2nAnB
�sin�2�NnAdA

�
� , �5�

where � is the vacuum wavelength. Transmittance tB and
reflectance rB have the same functional form but with the
indices A and B exchanged.

Assuming that the layers are uncorrelated, the average of
the total transfer matrix Xtot

�2� over all possible realizations of
the disorder can be written as the product of the transfer
matrices Xj

�2� of the individual layers: 	Xtot
�2�
=� j=1

N 	Xj
�2�


= 	Xj
�2�
N. In our case the ensemble average is obtained by

averaging X�2� over the type of layer and over N. In Eq. �5�
it is shown that r is antisymmetric for the exchange of A and
B; i.e., in the average type of layer, all terms linear in r or r*

in Eq. �4� become identically zero for all wavelengths. We
can thus write 2	T−1
= ��	X�2�
�2,2�N+1. Since ln	T−1
=2L /�
�18�, solving this equation and averaging over N leads to the
following analytical expression:

���� =
2L

ln	T−1

= 2�dA + dB��ln��3nA

2 + nB
2��nA

2 + 3nB
2�

+ 3
�nA

2 − nB
2�2

4 cos����0/��� − 5
� − 2 ln�4nAnB��−1

. �6�

This function is plotted in Fig. 4 together with the wave-
length averaged experimental value �averaged between �
=1 and 2 �m� of �=14.9±2.4 �m �obtained elsewhere for
the same sample �11��. Close to �=750 nm=�0 /2, the local-
ization length � diverges since this corresponds to an optical
thickness of half the wavelength of all layers and the sample
is therefore transparent for all realizations of disorder. In
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FIG. 3. �Color online� Observed distribution �in a single 250-
layer sample� of transmission peaks as a function of the full width
at half maximum � for single resonances �black, squares� and sec-
ond and third order necklace states �respectively, red �dots� and blue
�triangles�� together with the qualitative behavior obtained from the
theory �black �lower� dashed line for the single cavity, red �middle�
for the double cavity, and blue �upper� for the triple�. The theoret-
ical model has no free fitting parameters.

FIG. 4. �Color online� Numerical �black dots� and analytical
�blue, solid line� prediction for � are compared with the experimen-
tal result �green, dashed line�. The experimental value is averaged
over frequency �in the interval 1–2 �m� and thus is wavelength
independent. The green dotted lines represent the experimental un-
certainty for �.
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other words, at this wavelength scattering is absent and all
states are therefore extended. Vice versa, if the system is
completely disordered, one expects the scattering to be stron-
gest at �=�0 when the optical thickness of the layers is � /4,
obtaining thus a minimum in �.

In addition, we calculated numerically the transmission
values at various thicknesses, solving the transfer matrix nu-
merically, for many realizations of the disorder. We esti-
mated the localization length by fitting the equation 	ln T

=−� /L to the transmission values. These numerical results
are plotted as dots in Fig. 4 together with the confidence
interval of the fit. Note that the numerical results on a finite-
size sample show a peak of � at �=�0. It is known that
residual order can give rise to anomalies in the localization
length �19�. Due to the quarter-wavelength condition im-
posed on the layer thicknesses, a hidden order is contained in
the system because, at �0, each pair of equal layers �like AA
or BB� has an optical thickness of � /2 and is therefore
equivalent to the identity matrix �i.e., its transmission coef-
ficient is 1 and the phase shift a multiple of 2�� �20�. Our
analytical formula does not consider the possibility of re-
sidual order in the system and therefore does not show these
finite-size effects.

In conclusion we managed, through transmission mea-

surements of the optical phase, to identify multiple resonance
transport and to characterize unambiguously the order of
each necklace resonance. The sensitivity of this technique
allows us to study the necklace statistics and compare the
experimental data with a simple theoretical model. Good
agreement is obtained. We calculated, both analytically and
numerically, the frequency dependence of the localization
length � in binary disordered multilayers with positional dis-
order, developing a model to evaluate � and unveiling sur-
prising properties like finite-size anomalies and hidden par-
tial order. Our results are of general validity for all wave
transport phenomena in random 1D systems, including sound
and seismic waves, fonons �heat transport�, electrons, and
degenerate matter waves, as the propagation of a Bose-
Einstein condensate or Fermi sea.
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